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Preface

This course is an attempt to provide an overview of basic concepts of quantum transport
through modern small-size structures. It is a very hot topic at present time because it is
relevant to fundamental principles of quantum mechanics and statistical physics, as well
as to various applications in modern electronics.

Several excellent books [1, 2, 3, 4, 5, 6] and review articles (e. g. [7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19]) are written on this subject. This list is far from being complete.

In the present course I try to select only few topics from the broad area to provide a
general introduction to the subject. The reference list includes only few selected papers
rather than a more or less complete overview of the literature. I tried to concentrate on
the basic concepts rather than on historical aspects.

Any comments and criticism will be gratefully appreciated.

October 1998

Yuri Galperin
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Chapter 1

Preliminary Concepts

1.1 Two-Dimensional Electron Gas

An important system where quantum effects were observed is two-dimensional electron gas
(2DEG). There are two basic systems where 2DEG has been studied. One of them is Si
MOSFETs (metal-oxide-semiconductor field-effect transistors). A very good review of such
systems is given in Ref. [7]. A typical device is shown in Fig. 1.1. A (100)Si surface serves
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Figure 1.1: Band diagram showing conductance band EC , valence band EV and quasi-
Fermi level EF . A 2DEG is formed at the interface between the oxide (SiO2) and p-type
silicon substrate as a consequence of the gate voltage Vg.

as a substrate while SiO2 layer behaves as an insulator. 2DEG is induced electrostatically
by application a positive voltage Vg. The sheet density of 2DEG can be described as

ns =
εox

edox

(Vg − Vt)

where Vt is the threshold voltage for the barrier’s creation
Another important systems with 2DEG involve modulation-doped GaAs-AlGaAs het-

erostructures. The bandgap in AlGaAs is wider than in GaAs. By variation of doping
it is possible to move the Fermi level inside the forbidden gap. When the materials are

1



2 CHAPTER 1. PRELIMINARY CONCEPTS

put together, a unified level of chemical potential is established, and an inversion layer is
formed at the interface.

+
+
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Figure 1.2: Band structure of the interface between n-AlGa As and intrinsic GaAs, (a)
before and (b) after the charge transfer.

The 2DEG created by a modulation doping can be squeezed into narrow channels
by selective depletion in spatially separated regions. The simplest lateral confinement
technique is to create split metallic gates in a way shown in Fig. 1.3 A typical nanostructure
is shown in Fig. 1.4.

1.2 Basic Properties of Low-Dimensional Systems

Wave Functions

Let us direct z-axis perpendicular to the plane of 2DEG. The wave function can be decou-
pled as

Ψ(r, z) = χ(z)ψ(r)

where r is the vector in plane of 2DEG. Throughout our considerations we will assume that
all the distances are much larger than interatomic distance and thus we will use the effective
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Figure 1.3: On the formation of a narrow channel by a split gate.

Figure 1.4: Scanning electron microphotographs of nanostructures in GaAs-AlGaAs het-
erostructures. Taken from M. L. Roukes et al., Phys. Rev. Lett. 59, 3011 (1987).

mass approximation. A good approximation for the confining potential is a triangular one,

U(z) =

{
∞ at z < 0 ;
Fz at z > 0 .

Then one can write the Schrödinger equation for the wave function χ(z) as

∂2χ

∂z2
+

2m

~
2

(E − Fz)χ = 0 . (1.1)

Instead z we introduce a dimensionless variable

ζ =

(
z − E

F

)(
2mF

~
2

)1/3

.

The quantity

`F =

(
2mF

~
2

)−1/3

plays the role of characteristic localization length in z direction. Then Eq. (1.1) acquires
the form

χ′′ − ζχ = 0
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which should be solved with the boundary conditions of finiteness at infinity and zero at
z = 0. Such a solution has the form

χ(ζ) = AAi(ζ) .

Here Ai(ζ) is the Airy function defined as

Ai(ζ) =
1√
π

∫ ∞
0

cos(u3/3 + uζ) du .

For large positive ζ it decays exponentially,

Ai(ζ) ≈ 1

2ζ1/4
e−(2/3)ζ3/2

,

while for large negative zeta is is oscillatory,

Ai(ζ) ≈ 1

|ζ|1/4
sin

(
2

3
|ζ|3/2 +

π

4

)
.

The energy spectrum E is defined by the roots ζn of the equation

Ai(ζ) = 0 , → En = −E0ζn .

Here

E0 =

(
~

2F 2

2m

)1/3

.

We have ζ1 ≈ −2.337 , ζ2 ≈ −4.088. The normalization constants An for each level are
defined as

A−1
n =

∫ ∞
0

dz |χn(z)|2 .

Normalized electron densities An|χn(z)|2 are shown in Fig. 1.5. Each level creates a sub-
band for the in-plane motion, the energy being

En,k = En + E(k) = En +
~

2k2

2m
.

Note that the effective mass m is considerably smaller than the mass of a free electron.

Density of States

The density of states g(ε) is defined as number of states per the energy interval ε, ε + dε.
It is clear that

g(ε) =
∑
α

δ(ε− εα)

where α is the set of quantum numbers characterizing the states. In the present case it
includes the subband quantum number n, spin quantum number σ, valley quantum number
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Figure 1.5: Normalized electron densities An|χn(z/`F )|2 for the first (1) and second (2)

subbands in a triangle potential with the slope F , `F = (~2/2mF )
1/3

.

v (for n-type materials), and in-plane quasimomentum k. If the spectrum is degenerate
with respect to spin and valleys one can define the spin degeneracy νs and valley degeneracy
νv to get

g(ε) =
νsνv
(2π)d

∑
n

∫
ddk δ (ε− En,k) .

Here we calculate the number on states per unit volume, d being the dimension of the
space. For 2D case we obtain easily

g(ε) =
νsνvm

2π~2

∑
n

Θ(ε− En) .

Within a given subband it appears energy-independent. Since there can exist several
subbands in the confining potential (see Fig. 1.6, inset), the total density of states can be
represented as a set of steps, as shown in Fig. 1.6. At low temperature (kT � EF ) all the
states are filled up to the Fermi level. Because of energy-independent density of states the
sheet electron density is linear in the Fermi energy,

ns = N νsνvmEF
2π~2

+ const
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Figure 1.6: Density of states for a quasi-2D system.

while the Fermi momentum in each subband can be determined as

kFn =
1

~

√
2m(EF − En) .

Here N is the number of transverse modes having the edges En below the Fermi energy.
The situation is more complicated if the gas is confined into a narrow channel, say, along
y-axis. In a similar way, the in-plane wave function can be decoupled as a product

ψ(r) = η(y)
1

N
eikxx ,

where N is a proper normalization factor, the energy being

En,s,k = En + Es(kx) = En + Es +
~

2k2
x

2m
.

Here Ens ≡ En +Es characterizes the energy level in the potential confined in both (z and
y) directions. For square-box confinement the terms are

Es =
(sπ~)2

2mW 2
,

where W is the channel width, while for the parabolic confinement U(y) = (1/2)mω2
0y

2

(typical for split-gate structures)

Es = (s− 1/2)~ω0 .

It is conventional to introduce partial densities of states for the states with kx > 0 and
kx < 0, g±, respectively. We have,

g+
s (ε) =

νsνv
2π

(
dEs(kx)

dkx

)−1

=
νsνv
√
m

23/2π~

1√
ε− Ens

. (1.2)

The total density of states is

g+(ε) =
νsνv
√
m

23/2π~

∑
ns

Θ(ε− Ens)√
ε− Ens

. (1.3)

The energy dependence of the density of states for the case of parabolic confinement is
shown in Fig. 1.7.
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Figure 1.7: Density of states for a quasi-1D system (solid line) and the number of states
(dashed lines).

Motion in a perpendicular magnetic field

2DEG in a perpendicular magnetic field gives an example of 0-dimensional electronic sys-
tem. Indeed, according to the classical theory the Hamilton’s function of a charged particle
in an external electromagnetic field is

H =
1

2m

(
p− e

c
A
)2

+ eφ ,

where φ is the scalar and A is the vector potential of the field, and p is the generalized
momentum of the particle. According to the rules of quantum mechanics, one should
replace the canonical momentum p by the operator

p→ p̂ = −i~∇

and add also an extra spin term −µH where µ = µB ŝ/s. Here µB = e/2mc is the Bohr
magneton while ŝ is the spin operator. Generally, interaction with periodic potential of the
crystalline lattice leads to renormalization of the spin splitting µB → µ=gfµB where gf is
called the spectroscopic spin splitting factor.

Finally we get,

H =
1

2m

(
p̂− e

c
A
)2

− µH + eφ

=
p2

2m
− e

2mc
(A · p + p ·A) +

e2A2

mc2
− µ

s
ŝ ·H + eφ .
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Since
p̂ ·A−A · p̂ = −i~ divA ,

those operator commute if divA = 0. It holds in a uniform field with

A =
1

2
H× r .

The wave function in a magnetic field is not uniquely defined: it is defined only within the
gauge transform

A→ A +∇f , φ→ φ− 1

c

∂f

∂t
,

where f is an arbitrary function of coordinates and time. Under such a transform only the
phase of wave function is changed by the quantity ef/~c that does not affect the observable
quantities.

In classical mechanics, the generalized momentum of the particle is related to its velocity
by the Hamilton equations,

mv = p− eA/c .
According to the quantum mechanics we arrive at a similar expression. However different
components of velocity do not commute, the commutation rules being

{v̂x, v̂y} = i(e~/m2c)Hz ,

{v̂y, v̂z} = i(e~/m2c)Hx ,

{v̂z, v̂x} = i(e~/m2c)Hy .

That means that the particle cannot simultaneously have definite velocities in all three
directions.

Let us determine the energy levels in a 3-dimensional system embedded into a uniform
magnetic film with a vector potential

Ax = −Hy , Ay = Az = 0 .

The Hamiltonian then becomes

H =
1

2m

(
p̂x +

eHy

c

)2

+
p̂2
y

2m
+

p̂2
z

2m
− µ

s
ŝzH .

First, the operator ŝz commutes with the Hamiltonian. Thus z-component of spin is
conserved and can be replaced by its eigenvalue σ. Thus one can analyze the Schrödinger
equation for an ordinary coordinate function,

1

2m

[(
p̂x +

eH

c
y

)2

+ p̂2
y + p̂2

z

]
ψ − µ

s
σHψ = Eψ .

It is naturally to search for solution in the form

ψ = ei(pxx+pzz)/~φ(y) .
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The eigenvalues px and pz take all values from −∞ to ∞. Since Az = 0 we get

pz = mvz .

Thus the motion along magnetic field in 3D system is not quantized. For a motion in the
xy-plane we have the following Schrödinger equation,

φ′′ +
2m

~
2

[(
E +

µσ

s
H − p2

z

2m

)
− 1

2
mω2

c (y − y0)2

]
φ = 0 . (1.4)

Here
y0 = −cpx/eH = −a2

Hkx , aH = (c~/eH)1/2 , ωc = |e|H/mc . (1.5)

Since this equation is the same as the Schrödinger equation for a harmonic oscillator, we
obtain

E = (n+ 1/2)~ωc − (µσ/s)H + p2
z/2m, n = 0, 1, . . . (1.6)

The first term gives discrete levels which corresponds to the finite motion in the xy-plane,
they are called Landau levels. For an electron, µ/s = −|e|~/mc, and the energy spectrum
reads as

E =

(
n+

1

2
+ σ

)
~ωc +

p2
z

2m
. (1.7)

The eigenfunctions φn(y) are

φn(y) =
1

π1/4a
1/2
H

√
2nn!

exp

[
−(y − y0)2

2a2
H

]
Hn

[
y − y0

aH

]
. (1.8)

Here Hn is the Hermite polynomial.
In classical mechanics the motion in a magnetic field in xy-plane takes place in a circle

about a fixed center. Here the conserved quantity y0 corresponds to y coordinate of the
center of the circle. It is easy to see that the combination

x0 = cpy/eH + x

is also conserved, it commutes with the Hamiltonian. The quantity x0 corresponds to a clas-
sical x coordinate of the circle center. However, the operators ŷ0 and x̂0 do not commute.
That means that the coordinates x0 and y0 cannot take definite values simultaneously. 1

One can ask: why the coordinates x and y are not equivalent? The reason is that
the wave functions (1.8) correspond to the energy independent of ky. Consequently, any
function of the type ∑

kx

C(kx)ψN,kx,kz

1 In a classical mechanics, the radius of the circle is rc = cmvt/eH = vt/ωc. Here vt is the tangential
component of the velocity. Thus we have,

y = y0 + rc(vx/vt) , x = x0 − rc(vy/vt) .
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corresponds to the same energy and one can chose convenient linear combinations to get
correct asymptotic behavior.

To calculate the density of states in a magnetic field first we should count the number
of the values ky corresponding to the energy εα (the so-called degeneracy factor). As usual,
we apply cyclic boundary conditions along y and z -axes and get

kx =
2π

Lx
ny, kz =

2π

Lz
nz.

At the same time, we assume that the solution exists only in the region

0 < y0 < Ly.

So, the degeneracy factor is

Lx
2π
|kx|max =

Lx
2πa2

H

ymax
0 =

LyLx
2πa2

H

. (1.9)

This is very important relation which shows that one can imagine Landau states as cells
with the area a2

H . We will come back to this property later.
Now it is easy to calculate number of states in a 3D system treating the kz variable as

for the usual 1D motion

2|kz|Lz
2π

=
2
√

2mLz
2π~

√
ε− ~ωc(N + 1/2)

for each state with a given N . Finally, the total number of states per volume for a given
spin is

Zs(ε) =
∑
N

ZsN(ε) =
2
√

2m

(2π)2
~a2

H

∑
N

√
ε− ~ωc(N + 1/2)

where one has to sum over all the values of N with non-negative ε−~ωc(N+1/2). The total
number of sates is Z(ε) = 2Zs(ε). To get DOS one should to differentiate this equation
with respect to ε. The result is

gs(ε) =
dZ(ε)

dε
=

√
2m

(2π)2
~a2

H

∑
N

Θ[ε− ~ωc(N + 1/2)]√
ε− ~ωc(N + 1/2)

.

Here

Θ(x) =


1 for x > 0 ;
1/2 for x = 0 ;
0 for x < 0

is the Heaviside step function. To take the spin into account one should add the spin
splitting ±µBgfH to the energy levels. If we ignore the spin splitting we can assume
spin degeneracy and multiply all the formulas by the factor 2. We take it into account
automatically using g(ε) = 2gs(ε).
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Figure 1.8: Landau levels as functions of pz (left panel) and of H (right panel). The Fermi
level is assumed to be fixed by external conditions.

The behavior of the density of states could be interpreted qualitatively in the following
way. The Landau levels as functions of magnetic field for a given value of pz are shown in
Fig. 1.8. As a function of magnetic field, they form the so-called Landau fan. The Fermi
level is also shown. At low magnetic fields its dependence on magnetic field is very weak.
We see that if magnetic field is small many levels are filled. Let us start with some value
of magnetic field and follow the upper filled level N . As the field increases, the slopes of
the “fan” also increase and at a given threshold value HN for which

εN(HN) = εF .

As the field increases the electrons are transferred from the N -th Landau level to the other
ones. Then, for the field HN−1 determined from the equation εN−1(HN−1) = εF the (N−1)
becomes empty. We get

HN ≈
mccεF
e~

1

N
, so ∆

(
1

H

)
≈ e~

mccεF
.

Here mc is the so-called cyclotron effective mass which in the case of isotropic spectrum is
the same as the density-of-states effective mass. We observe that DOS in a given magnetic
field oscillated with the increase in energy just similar to the case of quasi 1D systems.
Here Landau sub-bands play the same role as the modes of transverse quantization for
quantum channels.

For a 2DEG the motion along z-direction is quantized, and instead of eipzz/~ we have
χs(z). The means that for each subband of spatial quantization we have a sharp Landau
level, the density of states (per area) being

g(ε) =
νveH

4π2
~

2c

∑
n,s,σ

δ(ε− En,s,σ) .

Thus the density of states has sharp maxima at the energy levels that is a feature of
so-called 0-dimensional system. In real samples the peaks are smeared by disorder.
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1.3 Degenerate and non-degenerate electron gas

At equilibrium the states are filled according to the Fermi function

f0(ε) =
1

exp[(ε− µ)/kT ] + 1
,

where µ is the chemical potential while k is the Boltzmann constant. The chemical potential
is determined by the normalization to the total number of electrons as

n =

∫ ∞
0

g(ε) f0(ε) dε

where n is the electron density. At zero temperature the chemical potential is called the
Fermi energy, εF . The graph of the Fermi function and its energy derivative is given in
Fig. 1.9

ε/ζ

-2.5
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-1.5

-1

-0.5

0

0.5

1

0.5 1 1.5 2

Figure 1.9: The Fermi distribution (solid line) and its energy derivative multiplied by kT
(dashed line) for ζ/kT = 10.

Since at T = 0
f0(ε) ≈ Θ(ε− ζ) ,

the Fermi energy is given by the equation

n =

∫ εF

0

g(ε) dε . (1.10)

The limiting case T = 0 is actually means the the inequality kT � εF is met. In the
opposite limiting case, kT � εF , we get

f0(ε) ≈ e(ζ−ε)/kT , n = eζ/kT
∫ ∞

0

g(ε) e−ε/kT dε .
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Thus,

f0(ε) = A(T ) e−ε/kT ,
1

A(T )
=

1

n

∫ ∞
0

g(ε) e−ε/kT dε . (1.11)

This distribution is called the Boltzmann one.

1.4 Relevant length scales

One can discriminate between several important length scales in low-dimensional systems.
They are shown in the Table 1.1.

1 mm
Mean free path in the quantum Hall regime

100 µm
Mean free path/Phase relaxation length
in high-mobility semiconductor at T < 4 K

10 µm
1 µm

Commercial semiconductor devices (1990)
100 nm

de Broglie wave length in semiconductors.
Mean free path in polycrystalline metallic films

10 nm
1 nm

de Broglie wave length in metals
Distance between atoms

1 Å

Table 1.1: A few relevant length scales. Note that 1 µm = 10−6 m = 10−4 cm; 1 nm =
10−9 m = 10 Å.

The above mentioned scales have the following physical meaning:

De Broglie wave length, λ. This length is defined as

λ =
2π~

p
=

2π

k

where p (k) is the typical electron momentum (wave vector). For Fermi gas the
characteristic momentum is just the Fermi momentum. For the case of a single filled
band in 2DEG,

λ = 2π/kF =
√

2π/ns

where ns is the sheet density. For the Boltzmann gas, p ≈
√

2mkT , and

λ =
2π~√
2mkT

.
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Mean free path, `. This is a characteristic length between the collisions with impurities
or phonons. It is defined as

` = vτtr

where v is the typical velocity while τtr is the so-called transport relaxation time. It
is defined as

1

τtr

∝
∫
dθ sin θW (θ) (1− cos θ)

where θ is the scattering angle while W (θ) is he scattering probability. Usually the
transport is characterized by the mobility

u =
eτtr

m
.

The physical meaning of mobility is that a typical electron drift velocity acquired in
an external electric field E is given by the relation

vd = uE .

Phase-relaxation length, Lϕ. This is a specially quantum mechanical relaxation length
which has no analogs in classical physics. Namely, classical motion can be described
as evolution of the probability to find a particle at a given point at a given time.
However, in quantum mechanics the state is characterized by the wave function which
has a phase. The phase is important in the so-called interference phenomena, where
the electron wave functions having different pre-history are collected at the same
point. If the phases of the waves are not destroyed, a specific quantum interference
phenomena can be observed and important. The phase-relaxation time, τϕ, describes
relaxation of the phase memory.

It is clear that scattering against any static spin-independent potential cannot lead
to the phase relaxation. Indeed, in any stationary potential the equations of motion
are time-reversible. The only processes which can be responsible for phase relaxation
are the ones which broke the symmetry with respect to time-reversal. Among them
are inelastic scattering by phonons, electron-electron collisions, spin-flip processes,
etc. An important feature of such processes is that an electron suffers many elastic
collisions during a typical time τϕ. Since it moves diffusively a proper way to estimate
the relevant length Lϕ is as follows:

Lϕ =
√
Dτϕ ,

where D = (1/d)v` is the diffusion constant (d is the dimensionality of the electron
gas).

Thermal dephasing length, LT . The above mentioned relaxation process is relevant to
the interference of the wave functions belonging to a single-electron state. However,
interference can be also important for the interaction of two electrons having close
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energies. Indeed, if the energy difference between the electrons is ≈ kT they travel
almost coherently during the time ~/kT . Thus the characteristic length of coherent
propagation is estimated as

LT =
√
~D/kT .

Comparing mean free path ` with characteristic dimensions of the system, L, one can
discriminate between diffusive, `� L and ballistic, ` ≥ L, transport. Such a classification
appears incomplete in the situation where different dimensions of the sample are substan-
tially different. The situation is illustrated in Fig. 1.10 for the case where the length L of
the sample is much larger than its width, W . If phase coherence is taken into account, the

Figure 1.10: Electron trajectories for the diffusive (` < W,L), quasi-ballistic (W < ` < L)
and ballistic (` > W,L) transport regimes. From [11].

scales Lϕ and LT become important, and the situation appears more rich and interesting.
Mesoscopic conductors are usually fabricated by patterning a planar conductor that has one
very small dimension to start with. Although some of the pioneering experiments in this
field were performed using metallic conductors, most of the recent work has been based on
the gallium arsenide (GaAs)–aluminum gallium arsenide (AlGaAs) material system. Some
important parameters for such systems are shown in Fig. 1.11.
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Figure 1.11: Electronic properties of the 2DEG in GaAs-AlGaAs and Si inversion layers.
From [10].



Chapter 2

Diffusive transport

2.1 Classical transport in diffusive regime

Boltzmann equation

According to classical physics, one can specify the coordinate r and the momentum p of
the particle. Thus one can calculate the non-equilibrium distribution function, fp(r, t), the
current density being

j(r, t) = e

∫
(dp) v fp(r, t) .

Here we denote (dp) ≡ ddp/(2π~)d. The distribution function is defined by the Boltzmann
equation

dfp(r, t)

dt
≡ ∂f

∂t
+
∂f

∂r

dr

dt
+
∂f

∂p

dp

dt
+ Icoll

=
∂f

∂t
+ v

∂f

∂r
+ F

∂f

∂p
+ Icoll

= 0 (2.1)

Here

F = e

(
E +

1

c
[v ×H]

]
is the force acting upon the electrons, v ≡ ∂εp/∂p is the (group) electron velocity, while
Icoll is the collision operator. It expresses the changes in the state due to quantum collisions
and can be expressed through the the transition probability Wif between the initial state
(i) and the final state (f),

Icoll(fα) =
∑
α′

[Wαα′fα(1− fα′)−Wα′αfα′(1− fα)] . (2.2)

Here α denotes the electronic state (in our case α ≡ {p, s}).

17
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In a stationary situation and in the absence of external fields the solution of the Boltz-
mann equation is the Fermi function. Substituting it into the collision operator we obtain
a very important relation between the probabilities of the direct and reverse processes,

Wαα′e
−εα′/kT = Wα′αe

−εα/kT .

Drude formula

The simplest problem is to calculate the linear response to a small stationary electric field,
E. Since we assume E to be small, it is reasonable to search solution as

fp(r) = f0(εp) + f (1) , |f (1)| � f0 .

Since Icoll(f0) = 0 we come to the integral equation

Icoll(f
(1)) = −eE∂f0(εp)

∂p
= eEv

(
−df0(εp)

dεp

)
.

The linearized collision operator has the simplest form for elastic processes when Wpp′ =
Wp′p. Then,

Icoll(f
(1)) =

∑
p′

Wpp′

(
f (1)

p − f
(1)
p′

)
.

Since we are interested in the function odd in p (to create a current) and it must be a
scalar it is natural to assume that

f (1)
p ∝ (p · ν) , ν ≡ E/E .

Under such an assumption

Icoll(f
(1)) =

f
(1)
p

τtr

,
1

τtr

=
∑
p′

Wpp′

(
pν − p′ν

pν

)
.

The quantity τtr is called the transport relaxation time. If the material is isotropic then W
is dependent only on the scattering angle θ between p and p′. From the simple geometrical
construction shown in Fig. 2.1 we observe that

p′ν = p′ cos θ cosφ , pν = p cosφ .

Consequently, we can express the relaxation time in the form

1

τtr

= g(εp)
1

2

∫ π

0

dθ sin θ (1− cos θ)W (θ) . (2.3)

Using the expression for the relaxation time we can write

f (1)
p = τtre(E · v)

(
−df0(εp)

dεp

)
→ j = e2

∫
(dp) v(E · v) τtr(εp)

(
−df0(εp)

dεp

)
.
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p

p’

θ

φ

ν

Figure 2.1: On the calculation of the transport relaxation time.

As a result, we arrive at the Ohm’s law, j = σE with

σ =

∫ ∞
0

dε g(ε)〈v2
Eτtr〉ε

(
−df0(ε)

dε

)
. (2.4)

Here vE means the projection of the velocity on the direction of the eelctric field, while
〈. . .〉ε means the average over the surface of a constant energy ε,

〈A(p)〉ε ≡
∫

(dp)A(p)δ(ε− εp)∫
(dp)δ(ε− εp)

.

The quantity

D = 〈v2
Eτtr〉ε =

1

d
v2τtr =

1

d
v` (2.5)

has an explicit physical meaning. This is just the diffusion constant for the electrons with
a given energy ε. Indeed, for low temperatures we get

σ = e2g(εF )D(εF ) . (2.6)

On the other hand, the phenomenological expression for the current density in the presence
of the density gradient reads as

j = σE− eD∇n ,
where D is th diffusion constant. In the equilibrium the current is zero and

eD∇n = eDg(εF )∇ζ = −σ∇ϕ .

At the same time, the electro-chemical potential ζ + ϕ/e, must be constant and ∇ϕ =
−e∇ζ. Substituting Eq. (2.6) we identify the quantity D(εF ) with the diffusion constant.
Eq. (2.6) is known as the Einstein relation.
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2.2 Linear response in quantum mechanics

Let us find a linear response to the perturbation 1

Hex = lim
η→0

λe−iωtÂeηt . (2.7)

According to time-dependent perturbation theory, the change in any quantity 〈B〉 in the
Heisenberg representation can be written as

δ〈B(t)〉 =
i

~

∫ t

−∞
dt′ 〈g| [Hex

H (t′), BH(t′)] |g〉

=
i

~

∫ t

−∞
dt′
∑
n

{〈g|Hex
H |n〉〈n|BH |g〉 − 〈g|BH |n〉〈n|Hex

H |g〉} . (2.8)

Here |n〉 means a complete set of eigenstates for the unperturbed Hamiltonian H, g stands
for the ground state, while subscript H stands for Heisenberg representation with respect
to non-perturbed Hamiltonian, H. Going to the Schrödinger representation as,

〈g|AH |n〉 = eiωgnt〈g|A|n〉 ≡ eiωgntAgn , ~ωgn ≡ Eg − En

we find that δB(t) = δBωe
−iωt with

δBω = lim
η→0

λ

~

∑
n

{
−〈g|A|n〉〈n|B|g〉

ω + ωng + iη
+
〈g|B|n〉〈n|a|g〉
ω − ωng + iη

}
. (2.9)

Defining linear response as δBω = χBA(ω)λ we find

χBA = lim
η→0

1

~

∑
n

{
− AgnBng

ω + ωng + iη
+

BgnAng
ω − ωng + iη

}
. (2.10)

Let us use this general formula for the response of a dipole moment density er/V in the
direction β to the electric field E directed in the direction α. Here V is the volume of the
sample. Since the perturbation Hamiltonian is eE · r we find

χβα =
e2

~V
lim
η→0

∑
n

{
−

rαgnr
β
ng

ω + ωng + iη
+

rβgnr
α
ng

ω − ωng + iη

}
. (2.11)

Since the complex dielectric function is

1 + 4πχ(ω) = 1 + 4πiσ(ω)/ω

we obtain

σβα(ω) = iω
e2

V~
lim
η→0

∑
n

{
rαgnr

β
ng

ω + ωng + iη
−

rβgnr
α
ng

ω − ωng + iη

}
. (2.12)

1 Here I partly follow the derivation given in Ref. [4].
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In particular,

<σβα(ω) =
e2ωπ

V~
∑
n

[
δ(ω + ωng)r

α
gnr

β
ng − δ(ω − ωng)rβgnrαng

]
(2.13)

Now we can generalize the presentation for finite temperature doing inverse Fourier trans-
form. Since δ(ω) =

∫
dt exp(−iωt) we can write

<σβα(ω) =
ωe2

2V~

∫ ∞
−∞

dt 〈g|[rα(0), rβ(t)]|g〉e−iωt

→ ωe2

2V~

∫ ∞
−∞

dt 〈[rα(0), rβ(t)]〉T e−iωt . (2.14)

Here we have replaced ground state average by the thermal one to alow for finite temper-
atures.

Fluctuation-dissipation theorem

Our derivation allows to obtain an important fluctuation-dissipation theorem relating fluc-
tuations in the system with the dissipation. Let us characterize fluctuations by the factor

Sβα(ω) =

∫ ∞
−∞

dt 〈rα(0)rβ(t)〉T eiωt =
∑
g,n

rαgnr
β
ngδ(ω − ωng)Pg

where Pg is the thermal weight of the state g. Using equilibrium thermal weights2 for Fermi
particles, Pg = f0(Eg)[1 − f0(En)], where f0(E) is the equilibrium Fermi distribution, we
obtain

<σβα(ω) =
e2ωπ

V~
Sβα(ω)

[
1− e−~ω/kT

]
(2.15)

This theorem is often used in some other form which can be obtained using the relations
between the operators v = ṙ. Assuming ~ω � kT we get

<σxx(ω) =
e2

2VkT

∫ ∞
−∞

dt 〈vx(0)vx(t)〉T eiωt (2.16)

Writing 〈vx(0)vx(t)〉T as a Fourier transform of velocity fluctuations, Sv(ω), we get

e2Sv(ω)

V
=
kT

π
<σ(ω)

which is just the famous Nyquist-Johnson relationship between the current noise spectrum
and the conductivity.

2Here we actually assume the transport through the device to be incoherent.
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At finite temperature using the expression for Pg we get

e2Sv(ω)

V
=
~ω

π

(
1

2
+

1

eβ~ω − 1

)
<σ(ω) (2.17)

Finally, since the contribution of an electron to the current is ev/L,

SI(ω) =
~ω

2π
coth

(
~ω

2kT

)
<G(ω) .

Here G(ω) ≡ σA/L is the conductance of the system (A is the area, while L is its length).

Derivation of Drude formula

Now we can derive the Drude formula explicitly. Coming back to the expression (2.14) and
introducing velocity operators we get

<σαβ(ω) =
e2

2

∫
dE g(E)

f0(E)− f0(E + ~ω)

~ω

∫ ∞
−∞

dt e−iωt〈vα(0)vβ(t)〉E . (2.18)

Here g(E) is the density of states while subscript E means that the average is calculated
over all the states with given energy E.

The quantity

Dαβ(E) =
1

2

∫ ∞
−∞

dt e−iωt〈vα(0)vβ(t)〉E (2.19)

is nothing else that diffusion constant. Indeed, assume that we have a small gradient in
electron density, n(x) = n0 + cx. Then the particle current is

jx = lim
∆t→0
〈vx(t = 0)n[x(t = −∆t)]〉 = lim

∆t→0
c〈vx(0)x(−∆t)〉

= −c lim
∆t→0

∫ ∆t

0

dt 〈vx(0)vx(−t)〉 .

In this way we obtain the classical expression for diffusion constant. Finally, at ~ω � µ
we arrive at the formula

<σαβ = e2

∫
dE g(E)

(
− ∂f
∂E

)
Dαβ(E) .

Substituting

Dαβ(E) =
〈v2
α〉
2

∫ ∞
−∞

e−iωt−|t|/τtr =
v2

d

τtr

1 + (ωτtr)2

(where d is dimensionality of the electron motion) we finally arrive at the Drude formula.
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2.3 Linear response in magnetic field. Shubnikov-de

Haas effect

Transport coefficients depend both on the density of states (DOS) and on the scattering
probability. The behavior of DOS in magnetic field was discussed in Chapter 1. We
have have seen that DOS oscillates because of the energy quantization. The scattering
probability, in its term, is also dependent on the density of states, as well on the scattering
matrix element. Consequently, it also oscillates in magnetic field, and it appears that the
last contribution is the most important. The quantum oscillations of conductivity is called
the Shubnikov-de Haas effect. Quantum oscillations of transport coefficients are widely
used for investigation of the properties of metals and semiconductors.

Let us outline main principles of these effects. To take the electric field into account
one should analyze the Schrödinger equation in crossed electric and magnetic field (H ‖
z, E ‖ x)

− ~
2

2m

∂2ψ

∂x2
+

1

2m

(
~

i

∂

∂y
+
e

c
Hx

)2

ψ − ~
2

2m

∂2ψ

∂z2
+ (eEx− ε)ψ = 0.

Here we use the gauge A = (0, Hx, 0). In this case we can search the solution as

ϕ(x) exp(ikyy + ikzz).

The equation for ϕ has the form

− ~
2

2m

d2ϕ

dx2
+

[
1

2m

(
eH

c

)2

x2 +

(
~eH

mc
ky + eE

)
x+

~
2(k2

y + k2
z)

2m
− ε

]
ϕ = 0.

The result can be expressed just in the same way as for the case E = 0 with the additional
terms

εEν = εN +
~

2k2
z

2m
+ δε, δε = −a2

HeEky −
mc2

2

(
E

H

)2

for the energy and

xE0 = x0 + δx0, x0 = −a2
Hky, δx0 = −eEa

2
H

~ωc
.

for the oscillator center x0.
Now we introduce the following concept. Assume that the electron in the state ν is is

situated at the point xE0 . The electric current is

jx = −e
′∑

ν,ν′

{
f0(εEν )

[
1− f0(εEν′)

]
WE
νν′ − f0(εEν′)

[
1− f0(εEν )

]
WE
ν′ν

}
.
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The prime over the sum means that the state ν has xE0 < 0, while the state ν ′ has xE0 > 0.
Then we expand the expression up to the linear in E term and get

σxx = e2
∑
ν,ν′

(
−∂f0(εν)

∂εv

)
(x0 − x′0)2

2
Wνν′ .

This formula has an explicit physical meaning. Indeed, the quantity

(x0 − x′0)2

2
Wνν′

is just the contribution of the states ν, ν ′ to the 2D diffusion coefficient in the plane (x, y).
Thus we come to the old formula

σ = e2

∫
dε g(ε)D(ε)

(
−∂f0

∂ε

)
where both g(ε) and D(ε) should be calculated with the help of quantum mechanics:

g(ε) =
∑
ν

δ(ε− εν), D(ε) =
1

g(ε)

∑
ν,ν′

δ(ε− εν)
(x0 − x′0)2

2
Wνν′ .

One can see that the result is strongly dependent on the scattering mechanism and oscillates
in the case of the Fermi statistics.

2.4 Weak localization

Consider noninteracting electrons having pF ` � ~ and passing between the points A and
B through scattering media. The probability is

W =

∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

=
∑
i

|Ai|2 +
∑
i6=j

AiA
∗
j . (2.20)

Here Ai is the propagation amplitude along the path i. The first item – classical probability,
the second one – interference term.

For the majority of the trajectories the phase gain,

∆ϕ = ~−1

∫ B

A

p dl� 1 , (2.21)

and interference term vanishes. Special case - trajectories with self-crossings. For these
parts, if we change the direction of propagation, p → −p , dl → −dl, the phase gains are
the same, and

|A1 + A2|2 = |A1|2 + |A2|2 + 2A1A
∗
2 = 4|A1|2 .
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A B

A B

O

Figure 2.2: Feynman paths responsible for weak localization

Thus quantum effects double the result. As a result, the total scattering probability at
the scatterer at the site O increases. As a result, conductance decreases - predecessor of
localization.
Probability of self-crossing. The cross-section of the site O is in fact de Broglie electron

wave length, λ ∼ ~/pF . Moving diffusively, if covers the distance
√
x̄2
i ∼
√
Dt, covering the

volume (Dt)d/2b3−d. Here d is the dimensionality of the system, while b is the “thickness”
of the sample. To experience interference, the electron must enter the interference volume,
the probability being

vλ2 dt

(Dt)d/2b3−d .

Thus the relative correction is

v dt

λ

Figure 2.3: On the calculation of the probability of self-crossing.

∆σ

σ
∼ −

∫ τϕ

τ

vλ2 dt

(Dt)d/2b3−d (2.22)

The upper limit is the so-called phase-breaking time, τϕ. Physical meaning – it is the
time during which the electron remains coherent. For example, any inelastic or spin-flip
scattering gives rise to phase breaking.

3d case

In a 3d case,
∆σ

σ
∼ − vλ2

D3/2

(
1√
τ
− 1
√
τϕ

)
∼ −

(
λ

`

)2

+
λ2

`Lϕ
. (2.23)
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Here we have used the notations

D ∼ v` , τ ∼ `/v , Lϕ =
√
Dτϕ . (2.24)

On the other hand, one can rewrite the Drude formula as

σ ∼ nee
2τ

m
∼ nee

2`

pF
∼ e2p2

F `

~
3

.

In this way, one obtains

∆σ ∼ − e
2

~`
+

e2

~Lϕ
. (2.25)

Important point: The second item, though small, is of the most interest. Indeed, it
is temperature-dependent because of inelastic scattering. There are several important
contributions:

• Electron-electron scattering:

τϕ ∼ ~εF/T 2 .

Thus
σ(T )− σ(0)

σ(0)
∼
(
λ

`

)3/2(
T

εF

)
.

It is interesting that at low temperatures this quantum correction can exceed the
classical temperature-dependent contribution of e-e–scattering which is ∝ T 2. It is
also important to note that the above estimate is obtained for a clean system. It
should be revised for disordered systems where electron-electron interaction appears
more important (see later).

• Electron-phonon-interaction. In this case,3

τϕ ∼
~

2ω2
D

T 3
,

and
σ(T )− σ(0)

σ(0)
∼
(
λ

`

)3/2(
T

εF

)1/2(
T

~ωD

)
.

Thus there is a cross-over in the temperature dependencies. To obtain the dominating
contribution one has to compare τ−1

ϕ . Consequently, at low temperatures e-e–interaction
is more important than the e-ph one, the crossover temperature being

T0 ∼ (~ω2
D/εF ) ∼ 1 K .

3Under some limitations.
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Low-dimensional case

If the thickness b of the sample is small 4, then the interference volume λ2v dt has to be
related to (Dt)d/2b3−d. For a film d = 2, while for a quantum wire d = 1. As a result,

∆σ

σ
∼ −vλ

2

D

{
b−1 ln(τϕ/τ), d = 2
b−2Lϕ, d = 1

. (2.26)

It is convenient to introduce conductance as

G ≡ σb3−d .

We have,

∆G ∼ −e
2

~

{
ln(Lϕ/`), d = 2
Lϕ, d = 1

. (2.27)

Important note: In low-dimensional systems the main mechanism of the phase breaking
is different. It is so-called low-momentum-transfer electron-electron interaction which we
do not discuss in detail

2.5 Weak localization in external magnetic field

In a magnetic field one has to replace p → p + (e/c)A (remember - we denote electronic
charge as −e). Thus the product AA∗ acquires an additional phase

∆ϕH =
2e

c~

∮
A dl =

2e

c~

∮
curl A dS = 4π

Φ

Φ0

(2.28)

where Φ is the magnetic flux through the trajectory while Φ0 = 2π~c/e is the so-called
magnetic flux quantum. Note that it is 2 times greater than the quantity used in the theory
of superconductivity for the flux quantum.

Thus magnetic field behaves as an additional dephasing mechanism, it “switches off”
the localization correction, increases the conductance. In other words, we observe negative
magnetoresistance which is very unusual.

To make estimates, introduce the typical dephasing time, tH , to get ∆ϕH ∼ 2π for the
trajectory with L ∼

√
DtH . In this way,

tH ∼ Φ0/(HD) ∼ l2H/D , lH =
√
c~/eH . (2.29)

The role of magnetic field is important at

tH ≤ τϕ → H ≥ H0 ∼ Φ0/(Dτϕ) ≈ ~c/L2
ϕ .

4The general from of the critetion depends on the relationship between the film thickness, b, and the
elastic mean free path `. The result presented is correct at b� `. At L� b� ` one can replace the lower
limit τ of the integral (2.22) by τb = b2/D.
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Note that at H ≈ H0

ωcτ ∼ ~/(εF τϕ)� 1

that means the absence of classical magnetoresistance. Quantum effects manifest them-
selves in extremely weak magnetic fields.

To get quantitative estimates one has to think more carefully about the geometry of
diffusive walks. Let consider the channel of 2DEG with width W . The estimates given
above are valid for `, Lϕ � W , exact formulas could be found, e. g. in Ref. [10]. Usually
H0 is very weak, at Lϕ = 1 µm H0 ≈ 1 mT. The suppression of weak localization is
complete at H ≥ ~/e`2, still under conditions of classically weak magnetic field, ωcτ � 1.

The situation is a bit different at W ≤ Lϕ, this case can be mentioned as one-
dimensional for the problem in question, see Fig. 2.4. Then a typical enclosed area is

φL
l

W

Figure 2.4: On quasi 1D weak localization.

S ∼ WLϕ, and the unit phase shift takes place at

tH ∼ L4
H/DW

2 , → H0 ∼ ~c/eWLϕ .

Some experimental results on magnetoresistance of wide and narrow channels are shown
in Fig. 2.5.

There are also several specific effects in the interference corrections:

• anisotropy of the effect with respect of the direction of magnetic field (in low-
dimensional cases);

• spin-flip scattering acts as a dephasing time;

• oscillations of the longitudinal conductance of a hollow cylinder as a function of
magnetic flux. The reason – typical size of the trajectories.

2.6 Aharonov-Bohm effect

Magnetoconductance corrections are usually aperiodic in magnetic field because the in-
terfering paths includes a continuous range of magnetic flux values. A ring geometry,
in contrast, encloses a continuous well-defined flux Φ and thus imposes a fundamental
periodicity,

G(Φ) = G(Φ + nΦ0) , Φ0 = 2π~c/e .
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Figure 2.5: Experimental results on magnetoresistance due to 2D weak localization (upper
panel) and due to 1D weak localization in a narrow channel (lower panel) at different
temperatures. Solid curves are fits based on theoretical results. From K. K. Choi et al.,
Phys. Rev. B. 36, 7751 (1987).

Such a periodicity is a consequence of gauge invariance, as in the originally thought exper-
iment by Aharonov and Bohm (1959). The fundamental periodicity

∆B =
2π~c

eS

comes from interference of the trajectories which make one half revolution along the ring,
see Fig. 2.6. There is an important difference between hc/e and hc/2e oscillations. The
first ones are sample-dependent and have random phases. So if the sample has many
rings in series or in parallel, then the effect is mostly averaged out. Contrary, the second
oscillations originate from time-reversed trajectories. The proper contribution leads to a
minimum conductance at H = 0, thus the oscillations have the same phase. This is why
hc/2e-oscillations survive in long hollow cylinders. Their origin is a periodic modulation of
the weak localization effect due to coherent backscattering. Aharonov-Bohm oscillations
in long hollow cylinders, Fig. 2.7, were predicted by Altshuler, Aronov and Spivak [20] and
observed experimentally by Sharvin and Sharvin [21]. A rather simple estimate for the
magnitude of those oscillations can be found in the paper by Khmelnitskii [22].
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(e/h) Φ∆φ = (e/h)∆φ =2 Φ

(a) (b)
B

Figure 2.6: Illustration of Aharonov-Bohm effect in a ring geometry. (a) Trajectories
responsible for hc/e periodicity, (b) trajectories of the pair of time-reversed states leading
to hc/2e-periodicity.
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Figure 2.7: On the Aharonov-Bohm oscillations in a long hollow cylinder.

2.7 Electron-electron interaction in a weakly disor-

dered regime

Let us discuss the effect of the e−e interaction on the density of states. Let us concentrate
on the exchange interaction, shown in a right panel of Fig. 2.8

∆ε = −
∫
|p−~k|≤pF

g(k)
d3k

(2π~)3
. (2.30)
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Figure 2.8: On the calculation of e− e interaction.

Here g(k) is the Fourier component of the interaction potential, the sign “-” is due to
exchange character of the interaction. In the absence of screening g(k) = 4πe2/k2, and

∆ε = −4πe2

∫
|p−~k|≤pF

k−2 d3k

(2π)3

= −4πe2
~

2

∫
p′<pF

1

|p− p′|2
d3p′

(2π~)3

= − e
2

π~

(
pF −

p2 − p2
F

2p
ln
p+ pF
p− pF

)
. (2.31)

To obtain this formula it is convenient to use spherical coordinates - (dp′) = 2πp′2 dp′ d(cosφ)
and auxiliary integral ∫ 1

−1

d(cosφ)

p2 + p′2 − 2pp′ cosφ
=

1

pp′
ln

[
p+ p′

p− p′

]
. (2.32)

At small p − pF it is convenient to introduce ξ = v(p − pF ) � εF to get (omitting the
irrelevant constant)

∆ε = −(e2/π~v)ξ ln(2pFv/ξ) . (2.33)

Screening can be allowed for by the replacement k−2 → (k2 + κ2)−1 that replaces p± p′ in
the argument of the logarithm in Eq. (2.32) by

√
(p± p′)2 + (~κ)2. As a result,

∆ε = −(e2/π~v)ξ ln(2pF/~κ) at ~κ� pF . (2.34)

This is a simple-minded estimate because it ignores the interference of the states. Indeed,
if the two states differ in the energy by |ξ| the coherence time is ~/|ξ|. If the electron
returns back for this time, then the effective interaction constant increases by

αξ =

∫
~/|ξ|

τ

vλ2 dt

(Dt)d/2b3−d . (2.35)

Thus
eeeff = e2(1 + αξ) .

In a similar way
∆v

v
=

∆g

g
=
e2

~v
αξ .



32 CHAPTER 2. DIFFUSIVE TRANSPORT

Here g is the density of electronic states. Consequently, since σ ∝ ν, we arrive to a specific
correction to conductance. Comparing this correction with the interference one we conclude
that interaction dominates in 3d case, has the same order in 2d case and not important
in 1d case. Another important feature is that the interaction effects are limited by the
coherence time ~/|ξ| ≈ τT = ~/kBT rather than by τϕ. Usually, τϕ � τT . Consequently,
the interference effects can be destroyed by weaker magnetic fields than the interaction
ones (important for separation of the effects).

2.8 Few words about Anderson localization

If we come back to the interference correction for d = 2, 1 we observe that it increases with
τϕ, or at T → 0. Thus the corrections becomes not small. We can also prepare the samples
with different values of the mean free path `.

What happens if the corrections are not small? Anderson (1958) suggested localization
of electronic states at T = 0. This suggestion has been later proved for an infinite 1d
system, as well as for an infinite wire of finite thickness (Thouless, 1977). Later it has been
shown that

G ∝ exp(−L/Lloc)

where Lloc ∼ ` in the first case and (bpF/~)2` for the second one (exponential localization).
It seems that such a law is also the case for a metallic film (rigorous proof is absent).
Very simple-minded explanation - over-barrier reflection + interference of incoming
and reflected waves. Because of the interference the condition T = 0 is crucial (no phase
breaking). This explanation is good for one-dimensional case.
A little bit more scientific discussion. Consider interference corrections to the con-
ductance at T → 0. In this case one has to replace

τϕ → L2/D , Lϕ → L .

One can conclude that in 3d case the relative correction is ∼ (~/pF `)
2 � 1 (usually).

However. at d = 1, 2 it increases with the size.
At what size ∆σ ≈ σ?

Lc =

{
` exp (p2

F b`/~
2), d = 2

` (pF `/~)2, d = 1
. (2.36)

We can conclude that in 3d case localization takes place at pF ` ∼ ~, while in 1d and 2d
case it takes place at any concentration of impurities.
Scaling hypothesis – According to the “gang of 4” (Abrahams, Anderson, Licciardello
and Ramakrishnan)

G(qL) = f [q,G(L)] . (2.37)

Assuming q = 1 + α, α� 1, we can iterate this equation in α:

G(L) = f [1, G(L)] ;

αLG′(L) = α(∂f/∂q)q=1 . (2.38)
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Denoting

G−1(∂f/∂q)q=1 ≡ β(G)

we re-write the scaling assumption through the Gell-Mann & Low function, β(G):

∂ lnG/∂ lnL = β(G) .

At very large G we can expect that the usual theory is valid:

G = σ


S2
⊥/L = L, d = 3 ;
bL⊥/L = b, d = 2 ;
b2/L, d = 1

(2.39)

Thus, in the zero approximation,

β(G) = d− 2 .

Then we can use the weak localization approximation to find next corrections. One can
get

β(G) ≈ d− 2− αdG0/G , (2.40)

where

G0 = e2/(π2
~) , αd ∼ 1 .

Indeed, for d = 3

lnG = ln[(σ + ∆σ)L] ≈ lnσL+ (∆σ)/σ ≈ ln [(σ + ∆σ|L=∞)L] + ~2/(p2
F `L) .

Thus

β(G) =
∂ lnG

∂ lnL
= 1− ~

2

p2
F `L

= 1− ~
2σ

p2
F `G

= 1− α3
G0

G
.

At small G one can suggest exponential localization:

G ∼ G0 exp(−L/Lc) → β(G) ∼ ln(G/G0) .

Thus we have the scenario shown in Fig. 2.9. Believing in such a scenario we get localization
for 1d case (β(G) < 0 - conductance increases with the length). At d = 3 we have a fixed
point at Gc, which is unstable (β changes sign). Under the simplest assumptions

β(G) ≈ γ(lnG− lnGc) ≈ γ(G/Gc − 1) ,

G = G(0) at L = L0 (initial condition)

(G(0) is close to Gc) we obtain

G

Gc

≈
(
G(0)

Gc

)(L/L0)γ

. (2.41)
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Figure 2.9: Flow curves for Anderson localization.

From Eq. (2.41) one can find important dependencies near the critical point. It is natural
to chose L0 ≈ ` and to suggest that at this size

σ0 ∼ e2p2
F `/~

3 → G0 = σ0L = (e2/~)(pF `/~)2 .

Now we can assume that we can control some parameter (say, impurity content, x, which
effects the mean free path `), and that G0 is regular in this parameter. Then, at small x
G(0) = Gc(1 + x). At L0 = ` we obtain

G = Gc(1 + x)(L/`)γ ≈ Gc exp[x(L/`)γ] .

Of course, such an assumption valid only at

x� 1 , L/`� 1 .

Thus at x < 0 we obtain exponential localization with the characteristic length

Lloc ∼ `|x|−1/γ , x < 0 .

However, at x > 0 G grows with L. In a spirit of the concept of phase transitions we can
treat the quantity Lc = `x−1/γ as a correlation length. At the scales of the order of Lc the
properties of conducting and insulator phases are similar. The above law can be valid only
in the vicinity of G0 ∼ Gc. Then we match the usual Ohm’s law, G = σL. Consequently,
the conductivity can be estimated as

σ ∼ G0

Lc
∼
(
G0

`

)
x1/γ , x > 0 .

Thus, we predict power law. Experiments on the dielectric constant (κ0 ∝ L2
c) support the

value
γ = 0.6± 0.1 .
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Don’t forget that we discuss the case T = 0, and the conductance is supposed at zero
frequency. The range of applicability is given by the inequalities

Lc � Lϕ, Lω =
√
Dω .

This is almost impossible to meet these conditions, so usually people extrapolate experi-
mental curves to T = 0, ω = 0. It is a very subtle point because, as it was shown, the
conductance at L ≤ Lϕ is not a self-averaging quantity with respect to an ensemble of
samples. More precise, the fluctuations between the samples cannot be described by the
Gaussian law, their distribution being much wider. Then,

• have all these scaling assumptions any sense?

• Why they reasonably agree with the experiment?

The answer is positive because both the scaling predictions and the experiment are valid
as an extrapolation from the region L ≥ Lϕ.

As the temperature grows, fluctuations decrease and the conductance tends to the
Ohm’s law.

Role of e− e interaction

Nobody can consider both disorder and interaction acting together. To get some under-
standing of the role of e− e interaction let us consider a clean metallic conductor. Assume
that under some external perturbation (say, pressure) the band overlap changes. In this
way we control the Fermi level (number of electrons and holes). One can consider them
as free ones as their kinetic energy p2

F/2m
∗ exceeds the potential energy e2/(κ0r̄). In this

way we come to the condition
e2

κ0~v
≤ 1 .

Otherwise electrons and hole form complexes - Wannier-Mott excitons. This state is insu-
lating because excitons are neutral. This is only one of possible scenario. In general, the
problem is a front end of modern condensed matter physics.



Chapter 3

Ballistic transport

3.1 Landauer formula

We start this chapter by a description of a very powerful method in physics of small systems
- so-called Landauer approach.

The main principle of this approach is the assumption that the system in question is
coupled to large reservoirs where all inelastic processes take place. Consequently, the trans-
port through the systems can be formulated as a quantum mechanical scattering problem.
Thus one can reduce the non-equilibrium transport problem to a quantum mechanical one.

Another important assumption is that the system is connected to reservoirs by ideal
quantum wires which behave as waveguides for the electron waves. We start our analysis
from the discussion of the properties of an ideal quantum wire.

Ideal quantum wire

Consider 2 large reservoirs of electron gas reservoirs having the difference δn in the electron
density and separated by a pure narrow channel. For small δn one can assume that there
is a difference in a chemical potential, δµ = δn/g(εF ). In the following we shall use the
Fermi level of non-biased system as the origin for the chemical potentials. So the difference
between the chemical potential in α-th reservoir will be denoted as µα.

If the channel is long and uniform, then the total current carried by the state char-
acterized by a transverse mode n and a given direction of spin which propagates without
scattering is

Jn = e

∫
dkz
2π~

∂εn(kz)

∂kz
=

2

2π~

∫ εF+µβ

εF+µα

dε
∂εn(kz)/∂kz
|∂εn(kz)/∂kz|

=
2

h
δµ .

If we take into account electron spin and N transverse modes are open, then the conduc-
tance is given by the expression G = 2e2

h
N .

We come to a very important conclusion: an ideal quantum wire has finite resistance
h/2e2N which is independent of the length of the wire.

37
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As we have seen, even an ideal quantum wire has a finite resistance. That means a
finite heat generation even in the absence of any inelastic processes inside the wire. Below
we will discuss the physical picture of heat release by a current-carrying nanostructure
(here we follow the considerations of Ref. [23]).

First of all let us specify what heat release is. It will be convenient to consider an
isolated system. Therefore we will have in mind the following physical situation. There is
a capacitor which is discharged through the conductor of interest. The product RC of the
whole system, R and C being the resistance and capacitance respectively, is much bigger
than any relaxation time characterizing the electron or phonon system of the conductor.
This means that for all the practical purposes the conduction process can be looked upon
as a stationary one. The total energy of the system, U , is conserved, while its total entropy,
Ŝ, is growing. The rate of heat generation is expressed through T∂Ŝ/∂t, where T is the
temperature, i.e. through the applied voltage and characteristics of the nanostructure itself.
This means that the result is independent of the assumption that the considered system
is isolated, which is made only for the sake of derivation. This thermodynamically defined
heat is generated in the classical reservoirs over the length having a physical meaning of
the electron mean free path. That is the same mean free path that enters the Drude
formula, which determines the conductivity of the reservoirs themselves, the amount of
heat generated per second in both reservoirs being the same.

It is interesting to indicate that even purely elastic collisions can result in a heat gen-
eration although they of course cannot establish full equilibrium. This has a clear physical
meaning. The amount of order in the electron distribution resulting in electric current can
bring about mechanical work. For instance, one can let the current flow through a coil,
and a magnetic rod can be drawn into the coil. In such a way the electrons transferring
the current can execute a work on the rod. As a result of scattering, the amount of order
in the electrons’ distribution diminishes, and this means dissipation of mechanical energy
into the heat. It has been shown that the heat release is symmetric in both reservoirs even
if the scatterers in the system are asymmetric.

All the above considerations do not mean that the collisions that give the main con-
tribution to the heat release, also establish full equilibrium. What equilibrium needs is
inelastic collisions which transfer the energy of electrons taking part in charge transfer to
other degrees of freedom, such as to other electrons and phonons. In particular, a local
equilibrium electron distribution is established over the length scale determined by electron-
electron interaction. Such a distribution can be characterized by a local electro-chemical
potential and sometimes an electron temperature. The latter can in principle be mea-
sured by optical methods. On the other hand, the equilibrium with respect to the lattice
is established at the scales of electron-phonon and phonon-phonon mean free paths. Only
over those distances from the channel one can treat the results in terms of the true local
temperature.
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Resistance of a quantum resistor

Consider a system shown in Fig. 3.1 consisting of a barrier connected to reservoirs by ideal
quantum wires. If there is some reflection only a part of the current is transmitted. In this

Figure 3.1: On the resistance of a quantum resistor.

case one can introduce the transmission probability of the mode n, Tn, to obtain (including
spin degeneracy)

J =
2

h
δµ

N∑
n=1

Tn .

As a result,

G =
2e2

h

N∑
n=1

Tn =
2e2

h
Tr tt† . (3.1)

Here t is the matrix of scattering amplitudes while the expression is called two-terminal
Landauer formula.

This very important and looking simple formula was confusing during a long period.
Indeed, this is the conductance which is measured between two reservoirs. Having in mind
that the resistance of the connecting ideal wires (per one conducting mode) is h/2e2 we
can ascribe to the scattering region the resistance

h

2e2

[
1

T
− 1

]
=

h

2e2

R

T
,

where R is the reflection coefficient. Consequently, in the original formulation the quantum
resistance was described as

G =
2e2

h

N∑
n=1

Tn
1− Tn

. (3.2)

However, the quantity which is usually measured is given by Eq. (3.1).
Now we derive the Landauer formula for finite-temperature and so-called multichannel

case when the leads have several transverse modes. Consider ideal wires which lead to
a general elastic scattering system. Let each lead has the cross section A and have N⊥
transverse channels characterized by wave vectors ki so that,

Ei +
~

2k2
i

2m
= EF .
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The incoming channels are fed from the electron baths with the same temperature and
chemical potentials µ1, µ2, . . .. The outgoing channels are fed up to thermal equilibrium
population. We shall assume that the particles are absorbed in the outgoing baths. The
sources are assumed to be incoherent, the differences µ1−µ2 are also assume small to yield
linear transport. We introduce the scattering amplitudes tij for the transmission from jth
incoming to ith outgoing channel. Reflection amplitudes rij are introduces in a similar
way for reflection into the ith incoming channel. If we replace the incoming and outgoing
channels, we denote the proper amplitudes by primes. In this way it is convenient to
introduce 2N⊥ × 2N⊥ scattering matrix as

S =

(
r t′

t r′

)
.

From the current conservation we must require unitarity while from time reversal symmetry
S = S̃. Thus we have also SS? = I where star stays for complex conjugation while tilde
for transposition. In a magnetic field the Onsager relation requires S(H) = S̃(−H).

It one defines the total transmission and reflection into ith channel as

Ti =
∑
j

|tij|2 , Ri =
∑
j

|rij|2 .

then from unitarity condition we get∑
i

Ti =
∑
i

(1−Ri) .

Since the densities of states in each channel are 1D like, gi(E) = (π~vi)
−1 we write the

current through outgoing channels as

I =
e

π~

∑
i

∫
dE [f1(E)Ti(E) + f2(E)R′(E)− f2(E)]

=
(µ1 − µ2)e

π~

∫
dE

(
− ∂f
∂E

)∑
i

Ti(E) .

Thus the conductance becomes

G =
2e2

h

∫
dE

(
− ∂f
∂E

)
Tr tt† .

This is the two-terminal conductance measured between the outside reservoirs which in-
cludes contact resistances.

Multiterminal resistance

For simplicity we shall discuss the case of zero temperature. Let us introduce the total
transmission probability from the bath α to the bath β,

Tα→β =
Nα∑
n=1

Nβ∑
m=1

|tβα,mn|2 .
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Here Ni is the number of propagating modes in each lead connected to ith reservoir.
Counting all the chemical potentials from the Fermi level, we see that the reservoir α
injects the current (2e/h)Nαµα into the lead α. The fraction Tα→β/Nα is transmitted to
the reservoir β while the fraction Tα→α/Nα = Rα/Nα is reflected back into reservoir α.
The the net current Iα is given by the following set of equation,

h

2e
Iα + (Nα −Rα)µα −

∑
β 6=α

Tβ→αµβ . (3.3)

Introducing vectors ~I and ~µ with components Iα and µα, respectively, we can write

~I = Ĝ~µ , (3.4)

where the conductance matrix Ĝ is defined as

Gαβ =
2e2

h
[(Nα −Rα) δαβ − Tβ→α (1− δαβ)]

=
2e2

h
[Nα δαβ − Tβ→α] . (3.5)

Here we use the relation Tα→α = Rα. The sum of rows of this matrix is zero because
of current conservation, the sum of the elements of each row also vanishes because if one
changes all the chemical potentials by the same amount no current will be induced. Thus

Nα −Rα =
∑
β 6=α

Tβ→α =
∑
β 6=α

Tα→β .

The equations (3.4) and (3.5) are called often the Landauer-Büttiker formalism. They

4
V

I I

1 2

3

Figure 3.2: On the resistance of 4-terminal device.

allow find, e. g. 4-terminal resistance. Indeed, we can put I1 = −I2 = I, I3 = I4 = 0.
Then ~I = I~j where

~j = I


1
−1
0
0

 .

Thus

R34 =
µ4 − µ3

I
=
(
Ĝ−1~j

)
4
−
(
Ĝ−1~j

)
3
.
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Having in mind the properties of the scattering amplitudes we have,

Tα→β(H) = Tβ→a(−H)

that results in the reciprocity relation

Rαβ,γδ(H) = Rγδ,αβ(−H) .

Here Rαβ,γδ stands for the resistance measured for voltage contacts γ, δ while the current
passes through the contacts α, β. Note that this relation works even in the case when the
concept of local conductivity is not applicable. What we only need is linear response and
absence of inelastic scattering inside the device under consideration.

One can easily generalize the above expressions for the case of finite temperatures by
replacement of the element of Ĝ-matrix by their thermal averages,

〈A〉T =

∫∞
0
dE g(E) (∂f0/∂E)A(E)∫∞
0
dE g(E) (∂f0/∂E)

.

3.2 Application of Landauer formula

Point ballistic contact

The most clean system is the so-called quantum point contact (QPC) - short and narrow
constrictions in 2d electron gas. A sketch of QPC is shown in Fig. 3.3 The conductance of

Figure 3.3: A sketch of QPC formed by splitted gates.

QPC is quantized in the units of 2e2/h. The quantization is not that accurate as in quantum
Hall effect (about 1%) because of non-unit transparencies Tn and finite temperature. It is
interesting to compare quantum and classical behavior of QPC. In a classical picture one
can write

J = W (δn)vF

∫ π/2

−π/2

dα

2π
cosα =

1

π
WvF (δn) .

Thus the “diffusion constant” is

Deff =
J

δn
=

1

π
WvF → G = e2g(εF )Deff =

2e2

h

kFW

π
.
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Figure 3.4: Quantization of conductance of a point contact: Schematic picture (left) and
experimental result (right).
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Figure 3.5: On the classical conductance of a point contact.

Note that the integer part of the quantity kFW/π is just the number of occupied modes
according to quantum mechanics.

Series addition of quantum resistors

Assume that we have two obstacles in series. Let the wave with unit amplitude is incident
to the region, the amplitude of the reflected wave is A while D is the amplitude the
wave transmitted through device. The obstacles are connected by an ideal conductor, the
phase shift of the wave along which being φ. Let the wave emerging from the obstacle

φ−eC

iφ
eB

i

D
1

A

B

C

Figure 3.6: On series of quantum resistors.

1 is B exp(kx − ωt). It reaches the obstacle 2 gaining the phase φ, having the complex
amplitude B exp(iφ). The reverse wave C gains the phase −φ. In this way we get the
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following set of equations,

A = r1 + t1C , B = t1 + r′1C

Ce−iφ = r2Be
iφ , D = t2Be

iφ

Solving this equation we obtain,

D =
eiφt1t2

1− e2iφr2r′1
,

that yields for the total transmittance:

T = |D|2 =
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(3.6)

where θ = 2φ+ arg(r2r
′
1). The ratio between reflection and transmission which should be

understood as a reduced resistance (in units h/2e2) of the system excluding wires is

G−1 ≡ R

T
=

∣∣∣∣AD
∣∣∣∣2 =

R1 +R2 − 2
√
R1R2 cos θ

T1T2

, G ≡ hG

2e2
. (3.7)

This is a very strange formula. Assume that we made an ensemble of the systems which
differ only by the distance between the obstacles, i. e. by the phase φ. Let the distribution
of φ will be constant in the interval (0, 2π). The averaging over φ we get

〈G−1〉 =
R1 +R2

(1−R1)(1−R2)
,

while the Ohm’s law will provide

G−1 =
R1

1−R1

+
R2

1−R2

.

As a result the Ohm’s law survives only at small reflections.
Let us construct a chain of n resistors with very small reflections. Then the total

reflection first increases linearly in n. Finally the total transmission becomes substantially
less than 1. Now let us add a very good conductor to this chain. We get

〈G−1〉n+1 =
Rn +R

Tn
= 〈G−1〉n +

R

Tn
.

Thus an addition a good conductor increases the resistance by R/Tn > R. Such a behavior
can be formulated as a “renormalization group”

1

R

d

dn
〈G−1〉n = 〈G−1〉n + 1 .

Thus the average resistance grows exponentially with the length which has something to
do with 1D localization. This considerations are not fully satisfactory because resistance
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is not the proper quantity to be averaged. Following Anderson, the proper quantity to be
averaged is ln(1 + G−1). Indeed,

1 + G−1 = 1 +R/T = 1/T → ln(1 + G−1) = − lnT .

The quantity − lnT plays the role of extinction exponent and it should be additive to
successive scatterers is the relative phases are averaged out. We get this relation using∫ 2π

0

dθ ln(a+ b cos θ) = π ln
1

2

[
a+
√
a2 − b2

]
.

So the exact scaling is given by the relation

〈ln
(
1 + G−1

n

)
〉 = n(Rh/2e2) .

Parallel addition of quantum resistors.

Let us now discuss the parallel addition of two single-channeled quantum resistors. The
geometry of the problem is shown in Fig. 3.7. All the phases and scattering effects along
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Figure 3.7: On the parallel addition of quantum resistances.

the branches are absorbed by the scattering parameters. Time-reversal symmetry requires
ti = t′i while the current conservation requires

−ti/t′?i = ri/r
′?
i .

In the presence of Aharonov-Bohm flux Φ through the loop, following from the gauge
invariance the scattering amplitudes are renormalized as

t1 → t1e
−iθ, t′1 → t1e

+iθ, t2 → t2e
+iθ, t′2 → t2e

−iθ, ri → ri, r
′
i → r′i .

Here θ = πΦ/Φ0.
This point needs some more explanation. An Aharonov-Bohm flux Φ through the

opening can be represented as
∮

A · dl along the path circulating the opening. Here A is
the vector potential. One can eliminate this flux by a gauge transform

ψ′ = ψ exp

[
ie

~c

∑
j

χj(rj)

]
,
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where χ is defines as Al = ∇χ. The transformed Schrödinger equation has Al = 0.
However, the price for this is that the transformed wave function, ψ′, does not satisfy
periodic boundary conditions. When the electron coordinate is rotated once around the
ring the phase of χ′ is changed by δχ = 2πΦ/Φ0. In our calculation this phase shift is
absorbed into the expressions for the transition amplitudes.

To find the transmitted wave one has to determine 10 unknown amplitudes, x1, x2, y1, y2, u1, u2, v1, v2, F,R.
It can be done solving the set of matching equations at the scatterers and the triple con-
nections. It is assumed that the connections do not introduce additional scattering and
can be described by the unitary scattering matrix

S =

 0 −1/
√

2 −1/
√

2

−1/
√

2 1/2 −1/2

−1/
√

2 −1/2 1/2

 .

Here Sii denote the reflection amplitude of the ith channel while off-diagonal elements Sij
are the transition amplitudes from the channel i to j. The subscript 1 is used for left
incoming channel and right outgoing channel. After rather long algebra made originally in
Ref. [24] we arrive at the solution,

T ≡ |F |2 = 4
α + β cos 2θ

γ + δ cos 2θ + ε cos 4θ
, (3.8)

where α, β, γ, δ, ε are rather complicated functions of the scattering amplitudes,

α = |A|2 + |B|2 , β = 2< (AB?) , γ = |D|2 + |E|2 ,
δ = 2< (DC? + EC?) , ε = 2< (DE?) ,

A = t21t2 + t2(r1 − 1)(1− r′1) , B = t22t1 + t1(r2 − 1)(1− r′2) ,

D = E = t1t2 C = t21 + t22 − (2− r1 − r2)(2− r′1 − r′2) .

This expression describes a rich physical picture. Even in the absence of magnetic field,
θ = 0 the transmittance can be strongly dependent on the phases of the complex scattering
amplitude. If we make one branch fully non-conducting, t1 = 0, still the appropriate choice
of phases of the reflection amplitudes r1 and r′1 can result either in T = 0 or T = 1. Indeed,
in this case,

A = t2(r1 − 1)(1− r′1) , B = D = E = 0 , C = t22 − (2− r1 − r2)(2− r′1 − r′2) ,

α = |t2|2|(r1 − 1)(1− r′1)|2 , β = 0 , γ = |t22 − (2− r1 − r2)(2− r′1 − r′2)|2 ,
δ = ε = 0 .

As a result we get

T =
|t2|2|(r1 − 1)(1− r′1)|2

|t22 − (2− r1 − r2)(2− r′1 − r′2)|2
.

Putting r1 = 1 we obtain T = 0. Thus we observe that non-conducting branch can influence
the total conductance strongly.

Of course, all the discussed effects are due to interference. If the size of the system
exceeds Lϕ we come back to classical laws.
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3.3 Additional aspects of ballistic transport

Adiabatic point contacts

The results of first observations of conductance quantization were surprising. Indeed, from
quantum mechanics it is well know that any sharp potential barrier produces oscillations
in the transmission coefficient as a function of the energy. However, the experimental steps
were more or less rectangular. An explanation of such a behavior was given in Ref. [25].
The authors showed that if the point contact has a smooth profile, i. e. if its width d
depends on the longitudinal coordinate x in a smooth way, then the T (E) dependence is
very close to a perfect step. To make the results simple, let us consider a channel with
rectangular confinement. Let us assume that we can separate the variables in an adiabatic
way, Ψn(x, y) = ψn(x)ϕn,x(y), and first solve the Schrödinger equation for a given width
d. In this way we get the transverse wave functions

ϕn,x(y) =

√
2

d(x)
sin

[
πn

2y + d(x)

d(x)

]
.

The Schrödinger equation for the longitudinal motion has the form

− ~
2

2m

d2ψ

dx2
+ εn(x)ψ = Eψ , εn(x) =

π2n2
~

2

2m[d(x)]2
.

If the variation d(x) is smooth at the scale of de Broglie wave length, k−1
F , the potential

εn(x) is semiclassical. Then one can use the semiclassical scheme for scattering problem
and choose

ψn(x) =

√
pn(∞)

pn(x)
exp

[
i

~

∫ x

0

pn(x′) dx′
]
, pn(x) =

√
2m[E − εn(x)] .

The transmittance step depends occurs when the Fermi energy crosses the maximum of

d

ρ

ο

Energy

x

E

Figure 3.8: On the adiabatic quantum point contact.
.

the potential εn(x) for the upper transverse mode, see Fig. 3.8. Expanding the potential
near its maximum we get

εn(x) = εn(0)

[
1−

(
∂2d(x)

∂x2

)
x=0

x2

d

]
.
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Since ∂2d/∂x2 = 2/ρ where ρ is the curvature radius of the center of constriction, we get
the barrier as

U(x) = εn(0)

[
1− 2x2

dρ

]
.

The transmission through a parabolic barrier is known,

T (E) =
1

1 + exp[−π2(kd0/π − n0)
√

2ρ/d0]
. (3.9)

Here d0 is the minimal width of the constriction, n0 is the number of upper level, while
k = ~

−1
√

2mE. We observe that the shape of the step is almost n independent, the
transition being sharp at ρ ≥ d0. It is important that the numerical factor π2

√
2 makes

the transitions sharp even at R ∼ d0. The same numerical factor helps for the semiclassical
condition to be valid. This criterion reads π2

√
2ρ/d0 � 1. To make the motion through

the contact ballistic the elastic mean free path should exceed
√
ρd0.

3.4 Electron-electron interaction in ballistic systems

The case of pure 3D metal. Concept of Fermi liquid

Let us begin with the estimate of the electron-electron scattering in a Fermi gas. Suppose
that we have a particle 1 outside the Fermi sea, see Fig. 3.9. If this particle interacts with

Figure 3.9: Scattering processes for electron-electron interaction.

another one, 2, inside the Fermi sea both final states should be outside the Fermi sea (Pauli
principle!). According to the momentum conservation law,

p1 + p2 = p′1 + p′2,

and, as we have seen,

p1, p
′
1, p

′
2 > pF ; p2 < pF.

The momentum conservation law is shown graphically in the right panel of Fig. 3.9. One
should keep in mind that the planes (p1,p2) and (p′1,p

′
2) are not the same, they are
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shown together for convenience. To get the escape probability for the particle 1 one should
integrate over the intermediate momenta

W ∝
∫
δ(ε1 + ε2 − ε′1 − ε′2) (dp2) (dp′1)

(p′2 is fixed by the momentum conservation). The energy conservation law actually deter-
mines the angle between p′1 and p′2 for given absolute values of these vectors. Consequently,
the rest is to integrate over p2 = |p2| and p′1 = |p1|.

Let p1 be close to pF . It means that all the momenta are close to pF and the angles
with the vector p1 + p2 are almost the same. So let us assume cosines to be the same and
from the relation between the projections write down

p′1 ≈ p1 + p2 − p′2.

Now let us recall that p′2 > pF . Consequently, p′1 < p1 + p2 − pF . But at the same time,
p′1 > pF . Thus

p1 + p2 − pF > pF , or p2 > 2pF − p1.

But from the Pauli principle, the upper limit for p2 is pF . As a result, we come to the
following chain of inequalities

0 > p2 − pF > pF − p1, 0 < p′1 − pF < (p1 − pF ) + (p2 − pF ).

Finally, ∫
dp2 dp

′
1 =

∫ 0

−α1

dα2

∫ α1+α2

0

dα′1 =
α2

1

2

where we have introduced αi = pi−pF . Now we should remember that ε−εF = vF (p−pF ).
SoW ∝ (ε−εF )2. The simplest way to estimate τ is to use dimensionality approach. Indeed,
the average potential and kinetic energies are of the order of εF . Consequently, the only
quantity which is proportional to (ε− εF )2 and has the time dimensionality is

τ ∼ ~εF
(ε− εF )2

.

We came to important conclusion: if one is interested in quasiparticles near the Fermi
level, |ε− εF | � εF , he can treat them as to near classical ones provided

~

(ε− εF )τ
≈ ε− εF

εF
� 1.

The typical value for the quasiparticle energy is kBT.This is why the electron-electron
interaction can be treated in the leading approximation in a self-consistent approximation.
The estimates above based on the conservation laws provide background of the theory
of Fermi liquid. The essence of this concept is that the excitations in the vicinity of
the the Fermi surface can be treated as quasiparticles which behave as particles with
renormalized velocity. Consequently, the effects of electron-electron interaction are not
crucially important in pure 3D systems.
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One-dimensional systems. Tomonaga-Luttinger liquid

For 1D interacting systems the above considerations are not valid because for a single
branch linear dispersion near the Fermi points the energy spectrum is close to linear,
E − EF ≈ v(p − pF ). That means that the energy and momentum conservation laws
are actually the same, and this is why they are not restrictive as in a 3D case. For this
reason, the perturbative corrections describing even weak electron-electron interaction are
divergent. A proper model for interactive 1D electrons is the so-called Tomonaga-Luttinger
model. According to this model, collective electron modes (plasmons) with linear spectra
are described by new, boson modes. Creation of a real electron in this model is equivalent to
excitation an infinite number of plasmons. Because of that, the space and time dependence
of density (and spin) correlation functions are substantially different from the ones for non-
interacting systems. That manifests itself in various kinetic quantities. For example, the
Drude conductivity is predicted to vary as power law with temperature.

The Luttinger liquid model which was previously used for 1D organic conductors now
became important for high-mobility quantum wires, as well as for edge states under con-
ditions of quantum Hall effect (see below). One can find a good review of this model in
Ref. [16].

A 1D quantum wire is appropriately characterized by a conductance. It the absence
of interactions, the conductance of an ideal single-mode quantum wire, adiabatically con-
nected to leads, is quantized, G = 2e2/h. In the presence of a scatterer, the conductance
drops to G = 2e2T/h, where T is the transmission coefficient.

The electron-electron interaction modifies dramatically the low-energy excitations in
a quantum wire that leads to striking predictions for the transport. The new features
manifest itself only if there is one (or several) scatterers inside the quantum wire - otherwise
the correlation effects are canceled out at the contacts between the interacting quantum
wire and non-interacting reservoirs. All that together leads to a rich and very interesting
physical picture.

To get a flavor of the theory 1 let us consider a spinless electrons hopping on 1D lattice
with the Hamiltonian

H = −t
∑
j

c†jcj+1 +
V

2

∑
j

c†jcjc
†
j+1cj+1 + h.c. . (3.10)

When the interaction V = 0 this Hamiltonian can be diagonalized as Ek = −t cos k, |k <
π. The low-energy excitation exist near±kF . Consider a single particle excitation near +kF
where we remove one electron with k < kF and place it into a free state with k + q > kF .
Then the energy of excitation is ~ωk = ~q vF . Adding a similar state near −kF we have
a situation similar to phonons in one dimension. When the interaction is turned on this
dispersion law remains, however the velocity is renormalized.

Linear spectrum implies a boson-like description. Mathematically in can be done using

1Here we follow Ref. [16].
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(Jordan-Wigner) canonical transform,

cj = exp

(
iπ
∑
k>j

c†kck

)
bj ,

that keeps the Hamiltonian (3.10) in the same from with replacement c → b. One can
check that the b operators at different lattice points commute, and therefore they are bosons.
Now, the boson operators can be approximately decoupled as bj →

√
nj exp(iφj) , nj ≡ c†jcj

Then we can proceed to continuum limit, focusing on scales long compared to the lattice
constant. In this way we replace

φj → φ(x) , nj → ρ̃(x) .

Extracting from the total electron density its average value, ρ0 = kF/π and introducing the
“displacement” operator, θ, as ρ̃−ρ0 = ∂xθ(x)/π we arrive at the phonon-like commutation
rule,

[φ(x), θ(x′)] =
iπ

2
δ(x− x′) .

We observe that ∂xφ is the momentum conjugate to θ. As a result, we arrive at the effective
Hamiltonian,

H =
v

2π

[
g(∂xφ)2 + g−1(∂xθ)

2
]
. (3.11)

From the commutation relations it can be seen that the Hamiltonian leads to the equation
of motion

∂2
t θ = v2∂2

xθ

and a similar equation for φ. the velocity v, as well as an additional dimensionless constant
g depend on the strength of interaction. For non-interacting electrons, v = vF and g = 1.

It is convenient to expand the original Fermion operator into two part corresponding
to the motion around the points ±kF ,

φ(x) ≈ ψR + ψL = ekF xeiΦR + e−kF xeiΦl00 ,

where ΦR/L ≡ φ± θ. These two field commute with one another and satisfy the relations,

[ΦR(x),ΦR(x′)] = −[ΦL(x),ΦL(x′)] = iπ sgn (x− x′) .

The right and left moving electron densities can be reconstructed as

NB/L = ±∂xΦR/L .

Then we can rewrite the Hamiltonian (3.11) as

H = πv0[N2
R +N2

L + 2λNRNL] (3.12)
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with

v0 =
v

2

(
g +

1

g

)
, λ =

1− g2

1 + g2
.

This Hamiltonian describes interacting system of right and left moving electrons. We
identify v0 to vF , the case g < 1 corresponds to λ > 0 (repulsion) while g > 1 corresponds
to attraction.

It is not straightforward how one can relate the parameters v and g with the original
lattice model because we have only the effective theory for low-energy excitations. There
are analytical expressions only for some models, e. g. for the case of long-range interaction
comparing to the scale k−1

F .
A very important point is that the parameter g has a physical meaning of dimensionless

(in units e2/h per spin) conductance of an infinite ideal Luttinger liquid. That can been
traced introducing new variables, φR/L = gφ± θ, that diagonalize the Hamiltonian (3.10)
as

H =
πv

g

(
n2
R + n2

L

)
, nR/L = ± 1

2π
∂xφR/L . (3.13)

The operators nR/L correspond to the densities of right and left moving interacting elec-
trons. The Hamiltonian allows chiral general solutions f(x ± vt). Now we can raise the
chemical potential of right chiral mode nR by an amount µR Them δH = −eµRnR, and
minimizing (3.13) we get nR = (ge/2πv)µR. Since the additional current to the right is
IR = enRv we get

G = g
e2

h
. (3.14)

As is was already mentioned, in a quantum wire it is impossible to couple only to one
chiral mode. As a result, the d.c. conductance of a finite Luttinger liquid wire coupled
to noninteracting leads appears the same as for noninteracting case. However, interaction
effects can be revealed in a.c. experiments, as well as in the presence of some scatterers.
Because of long-range correlations, the scatterers “undress” the excitations of interacting
systems. As a result, may interesting and important effects can be observed. In particular,
the interaction leads to a strong renormalization of density of states near an obstacle. For
example, if the Luttinger liquid wire has a large barrier with low transmission coefficient
T0 one can employ the results for the density of states in a semi-infinite liquid. That results
in the nonlinear current-voltage curve at low temperatures.

I ∝ T0|V |2(g−1)/g V → G(V ) ≡ dI

dV
∝ T0|V |2(g−1)/g .

Thus, got the repulsive case the linear conductance is zero. At finite temperature it does
exist. However it is proportional to T 2(g−1)/g. It the case of weak scattering the results are
substantially different.

There are several experiments where some deviations from the predictions of single-
electron theory were observed, such as unusual conductance quantization and anomalous
temperature dependences. Unfortunately, the electron-electron correlations are effectively
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destroyed by disorder and electron-phonon scattering. Therefore, to observe the interac-
tion effect one needs extremely pure samples and low temperatures. The results of such
experiment is demonstrated in Fig. 3.10.

The concept of Luttinger liquid is specifically important for quantum Hall effect sys-
tems. We shall see that near the edges of a Hall bar a specific edge states appear which
can be described by the above mentioned model. This system is much more pure that
quantum wires, and interaction effects are crucially important. We are going to discuss
quantum Hall systems later.
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Nonuniversal Conductance Quantization in Quantum Wires
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2NEC Research Institute, Princeton, New Jersey 08540
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We have measured the transport properties of high-quality quantum wires fabricated in GaAs-AlGaAs
by using cleaved edge overgrowth. The low temperature conductance is quantized as the electron
density in the wire is varied. While the values of the conductance plateaus are reproducible, they
deviate from multiples of the universal value of2e2�h by as much as 25%. As the temperature or dc
bias increases the conductance steps approach the universal value. Several aspects of the data can be
explained qualitatively using Luttinger liquid theory although there remain major inconsistencies with
such an interpretation. [S0031-9007(96)01675-4]

PACS numbers: 73.20.Dx, 73.23.Ad, 73.23.Ps, 73.50.Jt

One-dimensional (1D) electronic systems, so-called
Luttinger liquids, are expected to show unique transport
behavior as a consequence of the Coulomb interaction be-
tween carriers [1–4]. Even for Coulomb energies smaller
than the electron kinetic energy correlated electron behav-
ior is expected. Because of the large quantum mechani-
cal zero point motion of the electrons, these correlations
are short ranged and their spatial extent is expected to
increase in a power law manner as the system’s tempera-
ture is lowered [4]. The longer correlation length causes
the system to be more susceptible to pinning by local im-
purities. Therefore the conductance of a 1D system is
expected to be suppressed at low temperature even for a
wire with just a few impurities [4–6]. This remarkable
results as well as many other non-Fermi liquid properties
of the Luttinger model remain largely untested by experi-
ments due to the lack of a suitable 1D wire [7].

One of the fingerprints of a noninteracting 1D conduc-
tor is its quantized conductance in multiples of the univer-
sal valueGO � 2e2�h [8]. This quantization results from
an exact compensation of the increasing electron velocity
and the decreasing density of states as the number of carri-
ers increases. Therefore, as subsequent 1D electronic sub-
band are filled with electrons, the conductance appears as a
series of plateaus or steps with values equal toGQ multi-
plied by the number of partly occupied wire modes�N�.

In an earlier publication, mainly focusing on our novel
wire fabrication process, we determined the transport
mean free path as well as the energy and mode spec-
trum in the wire using magneto-transport spectroscopy
[9]. The exceptionally long transport mean free path
in excess of10 mm and the exceedingly large subband
spacing of 20 meV make these wires ideal for studying
effects of electron-electron�e-e� interactions in 1D. Here
we present results of such an investigation as temperature
and bias voltage are varied.

Transport through the wires at low temperatures (0.3 K)
presents a significant mystery. Although the wire’s con-
ductance is quantized in equal steps showing plateaus that
are flat to within 5%, the quantized conductance is re-

producibly lower thanNGQ . This reduction is of fixed
amount for a particular wire width and can be as large as
25%. At higher temperatures and dc biases the conduc-
tance approachesNGQ. We discuss three different mod-
els to put our unexpected findings in their proper context.
While some aspects of the data can be reproduced quali-
tatively, none of the scenarios provides a satisfactory in-
terpretation of all our observations.

The exceptional quality of the 1D wires is central to our
ability to obtain high quality, reproducible data. For this
reason we reiterate the intricate fabrication process.

Wire fabrication by cleaved edge overgrowth [10] and
the unique,in situ contacting scheme are shown in Fig. 1.
The starting point is a modulation doped GaAs quantum
well of 14, 25, or 40 nm thickness embedded between two

FIG. 1. (a) Wire preparation by cleaved edge overgrowth of
GaAs-AlGaAs by molecular-beam epitaxy. For details see text.
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(a) Wire preparation by cleaved edge overgrowth of GaAs-AlGaAs by MBE. The wire is
fabricated by cleaving the specimen [see also panel (b)]. Edge states (d) form the quantum
wire. Panels (e) and (f) show different charge distributions for different top voltages. The
panel (c) shows a blowup of critical device region. The mean free path is estimated as 10
µm, the length of the channel is about 2 µm.
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thick AlGaAs layers and doped from the top [Fig. 1(a)].
The resulting two-dimensional electron gas (2DEG) re-
sides 500 nm below the top surface, has an electron den-
sity n � �1 2� 3 1011 cm22, and a mobility m $ 3 3
106 cm2�V sec. A long and narrow evaporated tungsten
stripe [Fig. 1(a)] will later define the 1D wire region. The
quantum wire itself is fabricated by cleaving the spec-
imen in ultrahigh vacuum and overgrowing the smooth
cleavage plane with a second modulation doping sequence
[Figs. 1(a) and 1(b)]. This introduces electrons at the edge
of the quantum well [see Fig. 1(d)] creating one or more
confined edge states along the cleave. Strong overlap be-
tween the 2DEG and the edge states couple both systems
intimately along the entire edge. The 1D wire region is
obtained by decoupling the edge states from the 2DEG
with the help of the tungsten gate �T �, which, after the
cleave, extends exactly to the edge of the quantum well.
Figure 1(c) shows a blowup of the critical device region
under suitable bias conditions. In essence, the top gate (T)
separates the 2DEG into two sheets that connect, through
the edge states, to the 1D wire. The side gate (S), only
200 nm from the cleaved edge, primarily serves to vary
the electrons density along the edge.

Figures 1(d), 1(e), and 1(f ) show a sequence of
schematic cross sections of charge distributions in the
wire region for different top-gate voltages VT . As VT is
biased increasingly negative the 2DEG is separated and
the 1D wire becomes firmly confined in two dimensions:
in the z direction by the quantum well and in the y direc-
tion by the strong triangular potential of the cleaved-edge
modulation-doping sequence. Electrons in such cleaved
edge overgrowth wires are confined on three sides by
atomically smooth barriers and on the fourth side by a
strong electric field. It is important to realize that the
top gate affects only the density in the wire region and
the side gate affects the density in the entire edge. For
strongest 1D confinement the top gate is biased negatively
and the side gate strongly positively pushing the electrons
against the cleaved edge of the quantum well.

Electronic transport measurements on the quantum wires
are performed in a pumped He3 cryostat using an excita-
tion voltage of Vex � 10 mV at 16 Hz in the contact con-
figuration shown in Fig. 1(c). Figure 2 shows the linear
response conductance of a wire embedded in a 25 nm
quantum well as a function of VT . Clear conductance
quantization is observed. Importantly, the values of the
conductance plateaus are markedly different from NGQ

(dotted lines) and seem to be quantized in units of 0.85 3
�2e2�h�. This nonuniversal value is reproducible to within
5% in all wires fabricated from the same quantum well ma-
terial even if it was cleaved and overgrown in separate runs.
However, wires made with different quantum well widths
give different values. The 40, 25, and 14 nm quantum
wells have prefactors 0.9, 0.85, and 0.8, respectively. The
plateaus are flat to within 5% and their existence demon-
strates that deviations from universality are independent of
electron density in the wire. Constant step height between

FIG. 2. Linear response conductance of a 2 mm long wire
in a 25 nm quantum well vs the top-gate voltage �VT �
measured at a temperature of 0.3 K. The solid line is the
measured conductance. The dashed curve is the measured
conductance multiplied by an empirical factor of 1.15. Inset:
Linear response conductance of the last plateau for wires of
different lengths fabricated consecutively along the edge of a
single 25 nm cleaved edge overgrowth specimen. The numbers
denote the wire length in microns.

plateaus rules out a single series resistance as the origin of
nonuniversality. In such a case the step height would have
to decrease for the higher modes.

The effect of temperature on the wire conductance is
shown in Fig. 3. At high temperatures the higher plateaus
degrade due to the thermal population of the more closely
spaced upper subbands [8]. However, the lowest plateau
remains flat even at 20 K with a value approaching GQ at
high enough temperatures. The rigid rise, preserving the
plateau, suggests once more that there is no dependence
on the electron density in the wire. The temperature
dependence of the higher plateaus, GN �T �, is stronger and
appears to be given by GN �T� � NG1�T �. This suggests
that each mode contributes an equal amount to the total

FIG. 3. Differential conductance of a 2 mm long wire in a
25 nm quantum well vs top-gate voltage �VT . The different
curves correspond to different temperatures. Inset: The differ-
ential conductance vs temperature for a value of VT marked by
the arrow.

4613

Linear response conductance of a 2 µm log wire in a 25 nm quantum well vs. the top-gate
voltage (VT ) measured at a temperature 0.3 K.Solid line is the measured conductance. The
dashed curve is the measured conductance multiplied by an empirical factor 1.15. Inset:
Linear response conductance of the last plateau for wires of different lengths fabricated
consecutively along the edge of a single 25 nm cleaved edge overgrowth specimen. The
numbers denote the wire lengths in microns.

Figure 3.10: Non-universal Conductance Quantization in Quantum wires [From A. Yacoby,
et al., Physical Review Letters, 77, 4612 (1996).]



Chapter 4

Tunneling and Coulomb blockage

4.1 Tunneling

Modern technology allows to fabricate various structures involving tunneling barriers. One
of the ways is a split-gate structure. Such a system can be considered as a specific example

Gate

Gate

Barriers

Figure 4.1: Split-gate structure allowing resonant tunneling.

of series connection of to obstacles. The complex amplitude of the wave transmitted
through the whole system is

D =
t1t2e

iφ

1− e2iφr2r′1
=

t1t2e
iφ

1− eθ
√
R1R2

, (4.1)

where θ = 2φ+ arg(r2r
′
1). It is clear that the transmittance

T =
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(4.2)

is maximal at some specific value of θ where cos θ = 1, the maximal value being

Tmax =
T1T2

(1−
√
R1R2)2

. (4.3)
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This expression is specifically simple at T1, T2 � 1,

Tmax =
4T1T2

(T1 + T2)2
. (4.4)

Thus we observe that two low-transparent barriers in series can have a unit transmittance
if they have the same partial transparencies, T1 = T2 = T . The reason of this fact in
quantum interference in the region between the barriers which makes wave functions near
the barriers very large to overcome low transmittance of each barrier.

An important point is that the phase θ gained in the system is a function of the electron
energy. Thus near a particular value E(r) defined by the equality

cos θ(E(r)) = 0→ θ(E
(r)
k ) = 2πk

one can expand cos θ as

1− 1

2

(
∂θ

∂E

)2 (
E − E(r)

)2
.

Thus at low transmittance we arrive at a very simple formula of a Breit-Wigner type,

T ≈ T1T2

(T1 + T2)2/4 + (θ′)2 (E − E(r))
2

=
Γ1Γ2

(Γ1 + Γ2)2/4 + (E − E(r))
2 . (4.5)

Here we denote θ′ ≡ (∂θ/∂E)E−E(r) and introduce Γi = Ti/|θ′|.
The physical meaning of the quantities Γi is transparent. Let us assume that all the

phase shift is due to ballistic motion of an electron between the barriers. Then,

θ = 2ka = 2ah−1
√

2mE → θ′ =
a

~

√
2m

E
=

2a

~v

where v is the electron velocity. As a result, the quantity Γi can be rewritten as Γ = ~νaTi ,
where νa = v/2d is the frequency of oscillations inside the inter-barrier region, the so-called
attempt frequency. Thus it is clear that Γi are the escape rates through i-th barrier.

To specify the transition amplitudes let us consider a 1D model for a particle in a well
between two barriers. We are interested in the scattering problem shown in Fig. 4.2. To
find a transmission probability one has to match the wave functions and their gradients at
the interfaces 1-4 between the regions A-C. They have the following form

eikx + re−ikx in the region A;
a1e

κBx + a2e
−κBx in the region B;

b1e
ikx + b2e

−ikx in the region C;
c1e

κDx + c2e
−κDx in the region D;

teikx in the region E

.
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Figure 4.2: On the resonant tunneling in a double-barrier structure.

Here

k = ~−1
√

2mE , κi =
√
κ2

0i − k2 , κ0i = ~−1
√

2mUi .

The transmission amplitude is given by the quantity t while the reflection amplitude – by
the quantity r. In fact we have 8 equations for 8 unknowns (r, t, ai, bi, ci), so after some
tedious algebra we can find everything. For a single barrier one would get

T (E) =
4k2κ2

κ4
0 sinh2(κd) + 4k2κ2

≈ k2κ2

κ4
0

e−2κd .

Here d is the barrier’s thickness. So the transparency exponentially decays with increase of
the product κd. The calculations for a double-barrier structure is tedious, so we consider
a simplified model of the potential

U(x) = U0d[δ(x) + δ(x− a)] .

In this case we have 3 regions,

eikx + re−ikx x < 0 .
A sin kx+B cos kx 0 < x < a ,
teik(x−a) x > a

(4.7)

The matching conditions for the derivatives at the δ-functional barrier has the form

ψ′(x0 + 0)− ψ′(x0 − 0) = κ2dψ(x0) . (4.8)

Here κ2 = 2mU0/~
2. One can prove it by integration of the Schrödinger equation

(~2/2m)∇2ψ + U0dδ(x− x0)ψ = Eψ

around the point x0. Thus we get the following matching conditions

B = 1 + r ,

kA− ik(1− r) = κ2a(1 + r) ,

A sin ka+B cos ka = t ,

ikt− k(A cos ka−B sin ka) = tκ2a .
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First one can easily see that there is a solution with zero reflectance, r = 0. Substituting
r = 0 we get the following requirement for the set of equation to be consistent

k = k0 , tan k0a = −2k0

κ2d
. (4.9)

We immediately observe that at that k |t| = 1 (total transmission). At strong enough
barrier, κd� 1, this condition means

k0a = π(2s+ 1) , s = 0,±1, ..

Physically, that means that an electron gains the phase 2πs during its round trip (cf. with
optical interferometer). Thus two barriers in series can have perfect transparency even if
the transparency of a single barrier is exponentially small. The physical reason is quantum
interference.

The condition (4.9) defines the energy

E0 =
~

2k2
0

2m

where the transparency is maximal. Near the peak one can expand all the quantities in
powers of

k − k0 ≈
E − E0

(∂E/∂k)k0

≈ k0
E − E0

2E0

.

The result for a general case can be expressed in the Breit-Wigner form

T (E) =
ΓLΓR

(E − E0)2 + 1
4
(ΓL + ΓR)2

.

Here ΓL(R)/~ are the escape rates for the electron inside the well to the left(right) lead.
They are given by the attempt frequency v0/2a = ~k0/2ma times the transparency of a
given barrier.

Of course, if voltage across the system is zero the total number of electrons passing along
opposite directions is the same, and the current is absent. However, in a biased system
we obtain the situation shown in Fig. 4.3. Negative differential conductance, dJ/dV ≤ 0,
allows one to make a generator. One can also control the system moving the level E0 with
respect to the Fermi level by the gate voltage. In this way, one can make a transistor.

Commercial resonant tunneling transistors are more complicated than the principle
scheme described above. A schematic diagram of a real device is shown in Fig. 4.4. In this
device resonant tunneling takes place through localized states in the barrier. There exist
also transistors with two quantum wells where electrons pass through the resonant levels
in two quantum wells from the emitter to collector if the levels are aligned. The condition
of alignment is controlled by the collector-base voltage, while the number of electrons from
emitter is controlled by the base-emitter voltage.
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Figure 4.3: Negative differential conductance in double-barrier resonant-tunneling struc-
ture.

4.2 Coulomb blockade

Now let us discuss a specific role of Coulomb interaction in a mesoscopic system. Consider
a system with a dot created by a split-gate system (see above).

If one transfers the charge Q from the source to the grain the change in the energy of
the system is

∆E = QVG +
Q2

2C
.

Here the first item is the work by the source of the gate voltage while the second one is the
energy of Coulomb repulsion at the grain. We describe it by the effective capacitance C to
take into account polarization of the electrodes. The graph of this function is the parabola
with the minimum at

Q = Q0 = −CVG ,
So it can be tuned by the gate voltage VG. Now let us remember that the charge is
transferred by the electrons with the charge −e. Then, the energy as a function of the
number n of electrons at the grain is

∆E(n) = −neVG +
n2e2

2C
.

Now let us estimate the difference

∆E(n+ 1)−∆E(n) = −eVG + n
e2

C
.

We observe that at certain values of VG,

VGn = n
e

C
, (4.10)

the difference vanishes. It means that only at that values of the gate voltage resonant
transfer is possible. Otherwise one has to pay for the transfer that means that only inelastic
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Figure 4.4: Schematic diagram of a Si MOSFET with a split gate (a), which creates a
potential barrier in the inversion layer (b). In the right panel oscillations in the conductance
as a function of gate voltage at 0.5 K are shown. They are attributed to resonant tunneling
through localized states in the barrier. A second trace is shown for a magnetic field of 6
T. From T. E. Kopley et al., Phys. Rev. Lett. 61, 1654 (1988).

processes can contribute. As a result, at

kBT ≤
e2

2C

the linear conductance is exponentially small if the condition (4.10) is met. This phe-
nomenon is called the Coulomb blockade of conductance.

As a result of the Coulomb blockade, electron tunnel one-by-one, and the conductance
vs. gate voltage dependence is a set of sharp peaks. That fact allows one to create a
so-called single-electron transistor (SET) which is now the most sensitive electrometer.
Such a device (as was recently demonstrated) can work at room temperature provided the
capacitance (size!) is small enough.

Coulomb blockade as a physical phenomenon has been predicted by Kulik and Shekhter [26].
There are very good reviews [13, 14, 15] about single-change effects which cover both prin-
cipal and applied aspects. Below we shall review the simplest variant of the theory, so
called “orthodox model”.

A simple theory of single charge tunneling

For simplicity, let us ignore discrete character of energy spectrum of the grain and assume
that its state is fully characterized by the number n of excess electrons with respect to
an electrically neutral situation. To calculate the energy of the systems let us employ
the equivalent circuit shown in Fig. 4.5. The left (emitter) and right (collector) tunnel
junctions are modeled by partial resistances and capacitances.
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Figure 4.5: Equivalent circuit for a single-electron transistor. The gate voltage, Vg, is
coupled to the grain via the gate capacitance, Cg. The voltages Ve and Vc of emitter and
collector are counted from the ground.

The charge conservation requires that

− ne = Qe +Qc +Qg

= Ce(Ve − U) + Cc(Vc − U) + Cg(Vg − U) , (4.11)

where U is the potential of the grain. The effective charge of the grain is hence

Q = CU = ne+
∑
i=e,c,g

CiVi , C ≡
∑
i

Ci .

This charge consists of 4 contributions, the charge of excess electrons and the charges
induced by the electrodes. Thus, the electrostatic energy of the grain is

En =
Q2

2C
=

(ne)2

2C
+
ne

C

∑
i

CiVi +
1

2C

(∑
i

CiVi

)2

. (4.12)

The last item is not important because it is n-independent. In the stationary case, the
currents through both junctions are the same. Here we shall concentrate on this case. In
the non-stationary situation, an electric charge can be accumulated at the grain, and the
currents are different, see Appendix D.

To organize a transport of one electron one has to transfer it first from emitter to grain
and then from grain to collector. The energy cost for the first transition,

En+1 − En =
(2n+ 1)e2

2C
+
e

C

∑
i

CiVi (4.13)

must be less than the voltage drop eVe. In this way we come to the criterion

En − En+1 + eVe ≥ 0 . (4.14)

In a similar way, to organize the transport from grain to collector we need

En+1 − En − eVc ≥ 0 . (4.15)
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The inequalities (4.15) and (4.14) provide the relations between Ve, Vc and Vg to make the
current possible. For simplicity let us consider a symmetric system, where

Ge = Gc = G, Ce = Cc ≈ C/2 (Cg � C), Ve = −Vc = Vb/2

where Vb is bias voltage. Then we get the criterion,

Vb ≥ (2n+ 1)|e|/C − 2(Cg/C)Vg .

We observe that there is a threshold voltage which is necessary to exceed to organize
transport. This is a manifestation of Coulomb blockade. It is important that the threshold
linearly depends on the gate voltage which makes it possible to create a transistor. Of
course, the above considerations are applicable at zero temperature.

The current through the emitter-grain transition we get

I = e
∑
n

pn [Γe→g − Γg→e] . (4.16)

Here pn is the stationary probability to find n excess electrons at the grain. It can be
determined from the balance equation,

pn−1Γnn−1 + pn+1Γnn+1 −
(
Γn−1
n + Γnn+1

)
pn = 0 . (4.17)

Here

Γnn−1 = Γe→g(n− 1) + Γc→g(n− 1) ; (4.18)

Γnn+1 = Γg→e(n+ 1) + Γg→c(n+ 1) . (4.19)

The proper tunneling rates can be calculated from the golden rule expressions using tun-
neling transmittance as perturbations. To do that, let us write down the Hamiltonian
as

H0 = He +Hg +Hch +Hbath ;

He,c =
∑
kσ

εkc
†
kσckσ ,

Hg =
∑
qσ

εqc
†
qσcqσ ,

Hch = (n̂−Q0)/2C , n̂ =
∑
qσ

c†qσcqσ −N+ .

Here Hbath is the Hamiltonian for the thermal bath. We assume that emitter and collector
electrodes can have different chemical potentials. N+ is the number of positively charged
ions in the grain. To describe tunneling we introduce the tunneling Hamiltonian between,
say, emitter and grain as

He↔g =
∑
k,q,σ

Tkqc
†
kσcqσ + h.c.
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Applying the golden rule we obtain

Γe→g(n) =
Ge

e2

∫ ∞
−∞

dεk

∫ ∞
−∞

dεq fe(εk)[1− fg(εq)] δ(En+1 − En − eVe) .

Here we have introduced the tunneling conductance of e− g junction as

Ge = (4πe2/~) ge(εF )gg(εF )VeVg 〈|Tkq|2〉 .

along the Landauer formula, Ve,g being the volumes of the lead and grain, respectively. In
this way one arrives at the expressions

Γe→g(n, Ve) = Γg→e(−n,−Ve) =
2Ge

e2
F(∆+,e) ; (4.20)

Γg→c(n, Vc) = Γc→g(−n,−Vc) =
2Gc

e2
F(∆−,c) . (4.21)

Here
F(ε) =

ε

1 + exp(−ε/kT )
→ εΘ(ε) at T → 0 ,

while

∆±,µ(n) = En − En±1 ± eVµ =
1

C

[
e2

2
∓ en∓ e

∑
i

CiVi

]
± eVµ

is the energy cost of transition. The temperature-dependent factor arise from the Fermi
occupation factor for the initial and final states, physically they describe thermal activation
over Coulomb barrier. The results of calculation of current-voltage curves for a symmetric
transistor structure are shown in Fig. 4.6. At low temperatures and low bias voltages,

Figure 4.6: The current of a symmetric transistor as a function of gate and bias voltage at
T = 0 (from the book [5]).

V C/e < 1, only two charge states play a role. At larger bias voltage, more charge states are
involved. To illustrate this fact, a similar plot is made for symmetrically biased transistor,
Ve = −Vg = V/2, for different values of Q0, Fig. 4.7.
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Figure 4.7: The current of asymmetric transistor, Ge = 10Gc, as a function of bias voltage
at T = 0 and different Q0.e = 0, 0.25 and 1 (from the book [5]). At Q0 = 0 the Coulomb
blockade is pronounced, while at Q0/e = 0.5 the current-voltage curve is linear at small
bias voltage. The curves of such type are called the Coulomb staircase.

Cotunneling processes

As we have seen, at low temperature the sequential tunneling can be exponentially sup-
pressed by Coulomb blockade. In this case, a higher-order tunneling process transferring
electron charge coherently through two junctions can take place. For such processes the
excess electron charge at the grain exists only virtually.

A standard next-order perturbation theory yields the rate

Γi→f =
2π

~

∣∣∣∣∣∑
ψ

〈i|Hint|ψ〉〈ψ|Hint|i〉
Eψ − Ei

∣∣∣∣∣
2

δ(Ei − Ef ) .

Two features are important.

• There are 2 channel which add coherently: (i) e → g, g → c with the energy cost
∆−,e(n+ 1), and (ii) g → c, e→ g with the energy cost ∆+,c(n− 1).

• The leads have macroscopic number of electrons. Therefore, with overwhelming
probability the outgoing electron will come from a different state than the one which
the incoming electron occupies. Hence, after the process an electron-hole excitation
is left in the grain.

Transitions involving different excitations are added incoherently, the result being

Γcot =
~GeGc

2πe4

∫
e

dεk

∫
g

dεq

∫
g

dεq′

∫
c

dεk′ f(εk)[1− f(εq)]f(εq′)[1− f(εk′)]

×
[

1

∆−,e(n+ 1)
+

1

∆+,c(n− 1)

]2

δ(eV + εk − εq + εq′ − εk′) .
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At T = 0 the integrals can be done explicitly, and one obtains

Γcot =
~GeGc

12πe

[
1

∆−,e(n+ 1)
+

1

∆+,c(n− 1)

]2

V 3 for eV � ∆i .

As a result, the current appears proportional to V 3 that was observed experimentally. The
situation is not that simple for the degenerate case when ∆i = 0. In that case the integrals
are divergent and the divergence must be removed by a finite life time of a state. A detailed
treatment of that case is presented in the book [5].

There is also a process when an electron tunnels through the system leaving no excita-
tions in the grain. The probability of such elastic cotunneling has a small factor (ggVg)−1.
However, it leads to the current, proportional to V , thus it can be important at very low
bias voltage.

Concluding remarks

There are many experiments where Coulomb-blockaded devices are investigated. Probably
most interesting are the devices where tunneling takes place through a small quantum
dot with discrete spectrum. An example of such device is shown in Fig. 4.8. The linear
conductance of such a structure as a function of the gate electrode C is shown in Fig. 4.9
An important point is that at present time the devices can be fabricated so small that the
criterion kT ≤ e2/C can be satisfied at room temperatures. Now several room temperature
operating Coulomb blockade devices were reported. Among them are devices consisting
of large molecules with the probes attached in different ways. This is probably a starting
point for new extremely important field - molecular electronics. Such devices are extremely
promising both because they are able to operate at room temperatures and because they
will allow high integration. This is one of important trends. Another one concerns with
single-electron devices which include superconducting parts. There is a lot of interesting
physics regarding transport in such systems.
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Figure 4.8: (a) A typical structure of a quantum dot. The depleted (shaded) areas are
controlled by electrodes 1-4, C, and F. Electrode C also controls the electrostatic potential
in the dot. (b) a model of a quantum dot. From [7].

Figure 4.9: Conductance of a quantum dot vs. the voltage of gate electrode C. From L. P.
Kouwenhoven et al., Z. Phys. B 85, 367 (1991).



Chapter 5

Conductance Fluctuations.
Mesoscopics

5.1 General considerations

We have mentioned that fluctuations between the values of conductance of different samples
become very large in low-dimensional systems. However, the samples still contain many
atoms. According to the estimates, one can expect a very specific behavior in the sample
with the size ∼ 10−4 cm at T = 0.1 K. So,

• where is the difference between macroscopic and microscopic systems?

• What is going on in between, in such a so-called mesoscopic region?

It is very important that one can observe mesoscopic behavior even in a given sample
monitoring its properties as a function of an external parameter, say magnetic field. The
reason is that these effects are manifestations of quantum interference. External magnetic
field effects the phase gains along the trajectories which behave as almost random quanti-
ties. So (with some restrictions) one can consider a sample in a given field as a separate
representation of the ensemble of samples. Experimentally, mesoscopic fluctuations man-
ifest themselves as fluctuations in the resistance as a function of magnetic field. They
look random. However, they are “fingerprints” of a sample, they are reproduced at any
experimental run.

Now we discuss mesoscopic fluctuations in more detail.

5.2 Universal conductance fluctuations

As we have already mentioned, in 2D case the Drude conductance for a single spin direction
(and a single valley) can be written as

G =
e2

h

π`

2L
N , N ≡ kFW

π
.

67
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Here L is the length of the sample, W is its width, while ` is the elastic mean free path.
The number N is just the number of subbands that are occupied at the Fermi energy in a
conductor with width W .

Let us have in mind the Landauer picture of two reservoirs with some disordered region
in between.1 For simplicity let us assume that the latter region is connected to reservoirs
by ideal quantum wires.

If L � ` then the modes have the same average transmission probability, π`/2L,
that we can establish comparing Drude and Landauer formulas. We are interested in the
fluctuations around this average. For that let us come back to the multichannel Landauer
formula (for one spin)

G =
e2

h

N∑
α,β=1

|tαβ|2 .

For the ensemble average transmission coefficient we get

〈|tαβ|2〉 = π`/2NL .

We are interested in the quantity

Var (G) ≡
〈
(G− 〈G〉)2〉 .

An important point that while doing such an average one should keep track of the correla-
tion in transmission probabilities |tαβ|2 for different pairs of incident and outgoing channels.
The reason is that the transmission takes place via many scattering events, and they may
involve the same scatterers. On the other hand, the reflections are dominated only by
few scattering events, so they can be considered as uncorrelated. These considerations
definitely need a rigorous derivation which has been given first by Altshuler [28]. Taking
this concept for granted, we get

N∑
α,β=1

|tαβ|2 = N −
N∑

α,β=1

|rαβ|2 (5.1)

so the variance of the conductance is

Var (G) =

(
e2

h

)2

Var

(
N∑

α,β=1

|rαβ|2
)

=

(
e2

h

)2

N2 Var
(
|rαβ|2

)
, (5.2)

assuming reflections to be uncorrelated. There are different Feynman paths for reflection,
so we can write the variance

Var
(
|rαβ|2

)
=
〈
|rαβ|4

〉
−
〈
|rαβ|2

〉2

1Here we follow the arguments by Lee [27].
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using summation over the paths,

〈
|rαβ|4

〉
=

M∑
i,j,k,l=1

〈A?(i)A(j)A?(k)A(l)〉

=
M∑

i,j,k,l=1

[
〈|A(i)|2〉〈|A(k)|2〉δijδkl + 〈|A(i)|2〉〈|A(j)|2〉δilδjk

]
= 2

〈
|rαβ|2

〉2
. (5.3)

Here we neglected the terms smaller by a factor 1/M � 1. Therefore

Var
(
|rαβ|2

)
=
〈
|rαβ|2

〉2
.

Since the average 〈
|rαβ|2

〉
=

1

N

[
1−O

(
`

L

)]
that follows from the averaging of (5.1), we come to the conclusion that Var (G) = (e2/h)2

independently of ` and L in the diffusive limit `� L. This is why the called the universal
conductance fluctuations (UCF).

The general formula reads as

δG =
√

Var (G) =
gsgv

2
√
β
C
e2

h
.

Here gi are degeneracy factors, C depends on the sample geometry (actually, of its effective
dimensionality), while β = 1 in zero magnetic field and 2 when the magnetic field breaks
time-reversal symmetry (see later).

5.3 Temperature effects

The thermal effects are a bit complicated because of finite phase coherence length Lϕ =√
Dτϕ and of thermal averaging characterized by the thermal length LT =

√
~D/kT . Both

effects tend to restore self-averaging. We discuss the situate in a semi-qualitative way for
the geometry of a narrow channel in a 2DEG, namely at

W � Lϕ � L .

At Lϕ � LT one can neglect the effects of thermal average and think only about coherence.
Then one can divide the sample into uncorrelated segments with the length Lϕ, each of
which has a fluctuation of order e2/h. All the segments are in series, so their resistances
should be added according to the Ohm’s law. Denoting the resistance of each segment by
Rϕ we get

Var (Rϕ) ≈ 〈Rϕ〉4Var (1/Rϕ) = 〈Rϕ〉4(e2/h)2 .
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The average resistance is 〈R〉 = (L/Lϕ)〈Rϕ〉. Thus the variance of the resistance is

Var (R) = (L/Lϕ) Var (Rϕ) = (L/Lϕ)〈Rϕ〉4(e2/h)2 .

Coming back to conductance, we get

Var (G) = 〈R〉4Var (R) ≈ (Lϕ/L)3(e2/h)2 .

Finally

δG = constant× e2

h

(
Lϕ
L

)3

. (5.4)

Now let us discuss the role of thermal average. Consider two Feynman paths with the
energies different by δE. The can be considered as uncorrelated after a time t1 if the
acquired phase difference δϕ = (δE)t1/~ is of the order unity. In this time the electron
diffuses a distance L1 =

√
Dt1 ≈

√
~D/(δE). Now we can define the correlation energy at

which the phase difference following diffusion at the distance L1 is unity,

Ec(L1) ≡ ~D/L2
1 . (5.5)

Equating Ec = kT we obtain the expression for LT . If Lϕ � LT , then the total energy
interval kT near the Fermi level is divided into subintervals of the width Ec(Lϕ) = ~/τϕ in
which the phase coherence is maintained. These intervals can be assume as uncorrelated,
2 their number being N ≈ kT/Ec(Lϕ). As a result, the fluctuations are suppressed by
the factor N−1/2 = LT/Lϕ. There exists a very useful interpolation formula (see, e. g.
Ref. [10])

δG =
gsgv
√

12

2
√
β

e2

h

(
Lϕ
L

)3/2
[

1 +
9

2π

(
Lϕ
LT

)2
]−1/2

. (5.6)

5.4 Magnetoconductance fluctuations

In real experiments, people change either Fermi energy (by gates) or magnetic field H
rather than impurity configuration. It is conventionally assumed that sufficiently large
changes in the Fermi energy or in magnetic field is equivalent to a complete change of
impurity configuration (the so-called ergodic hypothesis”). The reason is that there exist
characteristic values of the correlation energy Ec or magnetic field, Hc. That provides a
possibility to study ensemble averages without changing the sample. The magnetoconduc-
tance correlation function is defined as

F (∆H) ≡ 〈[δG(H)− 〈G(H)〉] [δG(H + ∆H)− 〈G(H + ∆H)〉]〉 .

Thus the previous correlation function is just F (0) while the correlation field Hc is defined
as F (Hc) = F (0)/2.

To understand what is going on let us take into account that the correlation func-
tion contains the product of 4 Feynman path amplitudes, A(i,H), A?(j,H), A(k,H +
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(e/h) (Φ + ∆Φ)(e/h) (Φ + ∆Φ)

(e/h) Φ (e/h) Φ
r r

r’r’

∆ HH + 

H

Figure 5.1: Illustration of the influence of magnetic field on the diffuson (left) and cooperon
(right) contributions.

∆H), A?(l, H + ∆H) along various paths between the points r and r′, see Fig. 5.1. The
term for which i = l, j = k, i. e.

A(i,H)A∗(j,H)× A∗(i,H + ∆H)A(j,H + ∆H)

is called the diffuson. The physical meaning of this term is comes from the understanding
that A(i,H), A?(i,H) is just the classical probability for a diffusion from the point r to
the point r′. The phase of this term in a magnetic field is

−e
c

∮
A · dl +

e

c

∮
(A + ∆A) · dl =

e

~

∆Φ .

It contains only the increment of the flux, ∆Φ = A · ∆H and does not contain the flux
A ·H itself.

For the cooperon which is the product

A−(i,H)A?−(j,H)A+(j,H + ∆H)A?+(H + ∆H)

where the − sign refers to the trajectory from r′ to r (i. e. time-reverted) while + sign
refers to the trajectory from r to r′, the phase is

e

c

∮
A · dl +

e

c

∮
(A + ∆A) · dl =

e

~

(2Φ + ∆Φ) .

In contrast to the diffuson, the cooperon is sensitive to the total flux Φ through the loop
and therefore can be suppressed by a weak magnetic field.

We conclude that at B ≥ Bc only the diffuson contributes to the magnetoconductance
fluctuations. The combined effect of magnetic field and inelastic scattering on the diffuson
can be allowed for by the replacement τϕ → τeff with

τ−1
eff = τ−1

ϕ + t−1
∆H/2 .

Here t∆H/2 corresponds to the magnetic relaxation time tH obtained for weak localization
with substitution H → ∆H/2.

2This is actually true only at W � Lϕ.
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5.5 I − V -curve of a metallic wire: Fluctuations

Let us consider an example - current-voltage curve of a small (but macroscopic) metallic
wire with

`� b� L� Lϕ .

Let us estimate the phase difference between the electrons which have the difference in
energies δε and had a total path S within the sample:

∆ϕc ∼
S[p(ε+ δε)− p(ε)]

~

∼ S δε

~v
.

The electronic states can interfere if ∆ϕc ≤ 1. On the other hand, for a diffusive motion
S ∼ vt ∼ vL2/D. Thus

δε ∼ ~v
S
∼ ~D

L2
.

As a result, I − V curve must fluctuate at the voltage scale

Vc ∼ ~D/(eL2) .

What is the scale of the fluctuations in current? To estimate it let us take into account
that only the electrons within the layer eV near the Fermi level are important (at T = 0).
However, the fluctuations within the strips having the width Vc are statistically indepen-
dent, the number of such intervals being V/Vc (at V � Vc). Each interval contributes to
the current as

∆

(
Vc
R

)
= ∆

(
Vc

L/σb2

)
=
Vc
L
b2(∆σ) ∼ Vce

2

~

.

Here we have assumed 1d formula ∆σb2 ∼ (e2/~)L. Making use of statistical independence
of fluctuations, we obtain

Ic ∼
e2

~

√
V Vc .

Here we used the similarity to the diffusive motion:

x ∼
√
Dt ∼

√
vt` ∼

√
S`

with the mapping
S → V , `→ Vc .

It is interesting that
Ic
Vc
∼ e2

~

√
V Vc
Vc

∼ e2

~

√
V

Vc
.

It increases with V . This one can face negative differential conductance and corresponding
instabilities at

V

Vc
>

(
~

e2R0

)2

.
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As we have seen, the interference interval is crucially important. At finite temperature,
the energy spread T plays the same role as the interval eV above. Consequently, we have
T/(δε) independent intervals, the summary effect being proportional to

√
Tδε. Thus the

average manifestation of the interference goes as

√
Tδε

T
∼
√
δε

T
.

Requesting δε ≥ T we get
L ≤ LT ∼

√
~D/T .

Thus in general (with some restrictions) one has to require L ≤ Lϕ, LT to observe meso-
scopic phenomena.

5.6 Random matrix theory

Universal conductance fluctuations (UCF) can be described by a very different approach
based on on statistical theory of energy levels in complex systems, developed originally in
atomic physics (see [17] for a review). The approach was initially suggested by Altshuler
and Shklovskii [29] and Imry [30]. The starting point is the Thouless formula for the
dimensionless conductance G = G/G0, G0 = e2/h,

G = Ec/∆ , (5.7)

where Ec is a typical shift of the discrete levels in a finite sample induced by changing the
boundary conditions, say, from periodic to antiperiodic, while ∆ = [g(εF )Ld]−1 is a typical
interlevel spacing at the Fermi energy.

The physical meaning of Eq. (5.7) can been understood having in mind that Ec is just
the quantum mechanical uncertainty associated with the time required to move through
the sample. Thus, for the diffusive system,

Ec = ~D/L2 , (5.8)

where D is the diffusion constant. By the contrast, it the states are localized, Ec decays
exponentially with the sample length L, Ec ∼ exp(−L/ξ) where ξ is the localization length.
If we formally introduce the scale-dependent diffusion constant, D(L), then we come from
Eq. (5.7) to a generalized Einstein relation,

G(L) ∼ hg(εF )D(L)Ld−2

which is just the Drude formula for D = (1/d)vF `.
According to Eq. (5.7), the reduced conductance G equals to the number of levels, Nc,

within the band of width Ec at the Fermi level. In metallic regime, Nc � 1. One could
expect that that the variance of the quantity Nc defined as

VarNc ≡ 〈N2
c 〉 − 〈Nc〉2 ,
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is of the order Nc. However from the microscopic theory it follows that

VarNc ≈ 1 . (5.9)

From this point of view, the fluctuations are anomalously small, though they are much
larger than the thermodynamical ones.

The basic reason for that is that interlevel spacings are correlated. To quantitative
treatment of the correlation the Wigner-Dyson approach is usually used. The approach
assumes that the energy eigenvalues of complex systems may me approximated by those
of random matrices H for their Hamiltonians.

For pedagogical reasons, let us first discuss the case 2× 2 symmetric random matrices,

H =

(
h11 h12

h12 h22

)
with 3 independent random parameters h11, h12, h22. The eigenvalues are

E± = (h± ± s)/2 ;

h± = h11 ± h22 ,

s =
√
h2
− + 4h2

12 .

Let us find the distribution of the eigenvalues, p(E+, E−), assuming known the distributions
of random matrix elements, P(h11, h12, h22). We have

p(E+, E−) =

∫
dh11 dh22 dh11P(h11, h12, h22)

×δ (E+ − h+/2− s/2) δ (E− − h+/2 + s/2) .

Since
dh11 dh22 = 2dh+ dh− and dh+ ds = dE+ dE−

we get

p(E+, E−) ∝
∫ s

−s
dh−

∣∣∣∣∂h12

∂s

∣∣∣∣ . . . ∝ s

2

∫ s

−s

dh−√
s2 − h2

−
∝ π(E+ − E−)

2
.

Thus we conclude that the probability to find two eigenvalues vanishes as |E2 − E1| for
close levels. This is the so-called quantum level repulsion.

The original Wigner-Dyson (WD) prescription which allows to prove several important
theorems for the so-called Gaussian orthogonal ensemble is

p(H) ∝ exp

(
−N
λ2

0

Tr (H2)

)
,

where N is the matrix range while λ0 is a numerical parameter. Using this assumption we
obtain

p(E+, E−) =
π(E+ − E−)

2
exp

(
−

2(E2
+ + E2

−)

λ2
0

)
.



5.6. RANDOM MATRIX THEORY 75

The probability for the interlevel spacing s is thus

p(s) =
1

2

∫ ∞
∞

dh+ p(E+, E−) ∝ s exp

(
− s

2

λ2
0

)
.

This is the famous WD surmise for the spacing distribution. It is exact for 2× 2 matrices,
but also tends to be true for any N . Indeed, for 2 very close levels the problem is effectively
reduced to a 2× 2 matrix, and we arrive at the expression

p(s) =

∫
dh−

∫
dh12 δ

(
s−

√
h2
− + 4h2

12

)
. . .

which is proportional to s at small s.
Now let us turn to the case when the time-reversal symmetry is broken (say, by an

external magnetic field). Then the corresponding Hamiltonian is complex (and Hermitian)
rather than real symmetric, and the level spacing is

s =
√
h2
− + (2<h12)2 + (2=h12)2 .

Now three parameters must vanish simultaneously for an accidental degeneracy s = 0. As
a result, at small s

p(s) ∝ s2 .

The general expression for the eigenvalue distribution can be constructed as

p(E1 < E2 . . . < En) ∝
∏
i>j

(Ei − Ej)β exp

(
−βN
λ2

0

∑
−

E2
i

)
.

Here β = 1, 2 and 4 for the so-called orthogonal, unitary and symplectic ensembles. 3

To prove the adequacy of the description one should calculate the conductance variance
and compare it with microscopic derivation. To calculate the variance the Dyson-Mehta
theorem can be used. It states that the variance of any random variable of the form 4

A =
∑
i

a(Ei)

can be expressed as

VarA =
1

π2β

∫ ∞
0

t dt

∣∣∣∣∫ dE eiEta(E)

∣∣∣∣2 .
For our purpose of evaluating Nc we assume

a(E) = 1−Θ(|E| − Ec/2) . (5.10)

3A symplectic matrix is a unitary matrix with real quaternion elements.
4 This expression is called the linear statistics because it does not intermix different eigenvalues.
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Applying the Dyson-Mehta theorem we find that the expression for VarNc diverges at
small t unless the integral is cut off at t ≈ ∆−1. As a result,

VarNc =
2

π2β
ln
Ec
∆

=
2

π2β
ln〈Nc〉 .

This formula shows strong depression of fluctuations. However it differs from the micro-
scopic derivation by a large logarithm. The discrepancy was analyzed by Altshuler and
Shklovskii who pointed out that the above expression is actually valid for a closed sys-
tem. In an open system the levels are broadened by the amount of the order Ec itself. To
incorporate this broadening one can replace Eq. (5.10) by a smooth-edge expression

a(E) = (1 + E2/E2
c )
−1

to obtain VarNc = 1/4β. Unfortunately, the numerical factor here depends on the partic-
ular shape of a(E) and not universal. A generalization which yields the exact numerical
factors exists only in 1D case (see [17] for a review). This is the case of 2-terminal resistance
between the leads 1 and 2 which is given by the Landauer formula

G = 2TrS21S
†
21 .

The matrix S21S
†
21 is Hermitian and positive, it has N transverse eigenvalues corresponding

to N transverse modes with 0 ≤ Ti ≤ 1. The result for the average distribution function
for the parameters λi ≡ (1− Ti)/Ti has the form

p(λ) =
2N`/L

4
√
λ(1 + λ)

,

where it is assumed that N`� L� `.



Chapter 6

Quantum Hall Effect and Adiabatic
Transport

6.1 Ordinary Hall effect

In a magnetic field electrons’ trajectories are curved because of Lorentz force. As a result,

j = σ0 (E + [j×H]/nec) , σ0 = ne2τ/m .

One can solve this vector equation to obtain the resistivity tensor

ρ̂ =

[
ρ0 H/enc

−H/enc ρ0

]
, ρ0 = 1/σ0 .

The inversion of this tensor gives the conductivity tensor with the components (in 2d case)

σxx =
σ0

1 + (ωcτ)2
, σxy =

nec

H
+

1

ωcτ
σxx . (6.1)

There is a striking similarity between the quantization of the conductance of a ballistic
channel in units of e2/h and of the Hall conductance.

6.2 Integer Quantum Hall effect - General Picture

In the quantum case one faces the Landau levels. We have seen that the number of states
per unit area for a filled Landau level is

nH = 1/2πa2
H = eH/ch .

Usually the filling factor
ν = n/nH

for a fractionally filled level is introduced. If one substitutes to the expression for the Hall
component of the conductivity tensor and assumes ωcτ → ∞ he obtains σxy = νe2/h.

77
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This result seems very fundamental. Indeed, according to the electrodynamics, one can
eliminate the electric field on a spatially-homogeneous system by assuming a drift velocity

v = c [E×H]/H2 .

Thus, the result seems fundamental independently whether classical of quantum mechanics
is discussed.

Experimentally, the following picture was observed. It is clear that only violation of
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Figure 6.1: Schematic dependence of Hall resistance on filing factor.

the translational invariance can lead to such a picture. Thus one has to consider either
impurities, or edges.

The generally accepted picture is as follows. Impurities violate the translational invari-
ance. As a result, py is not a good quantum number any more, and Landau levels smear
into sub-bands. The crucial point that the most of the states are localized and cannot carry
the current.

To make the analysis as simple as possible let us discuss a 2d electrons in crossed electric
and magnetic fields (E ‖ x, H ‖ z) and a single impurity at the point r0 = {x0, y0}. As
we have seen (see Shubnikov-de Haas effect), the weak electric field leads to the energy
shift pyv where v = cE/H is the drift velocity in y-direction, as well as to the shift in
the center-of-motion co-ordinate is shifted in x-direction by v/ωc. Using the corresponding
states as a basis, we can now expand the exact wave function as

Ψ =
∑
npy

cnpyψnpy(r) .

We get ∑
npy

cnpy

[
Ĥ0 + V

]
ψnpy =

∑
npy

cnpy
[
Enpy + V

]
ψnpy = E

∑
npy

cnpyψnpy .
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Because V ∝ δ(r− r0) one can write

cnpy = λ
ψ∗npy(r0)Ψ(r0)

E − Enpy
.

Now we recall that
∑

npy
cnpyψnpy(r0) = Ψ(r0). Substituting the previous expression into

this equation, we get the exact condition for eigen energy

1

λ
=
∑
n,py

|ψn,py(r0)|2

E − En,py
.

The right hand side of this equation as a function of the energy is shown below One can
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Figure 6.2: Formation of localized states in 2DEG in magnetic field.

find from this equation one completely localized state for each Landau level, its energy
shift being proportional to λ. The lowest such state can be represented as (for r0 = 0)

ψloc ∼ exp

[
ixy

2a2
H

− x2 + y2

4a2
H

]
.

The other levels are almost unperturbed and extended.
Now let us take into account only the lowest Landau level which we assume to be

completely filled. We have one localized state and N−1 extended ones where N = A/2πa2
H ,

which we can label by the discrete quantum number k as

k =
pyLy
2π~

.

Each mode behaves just as the transverse mode in a quantum channel, and the current is
given as

I = −2

h

∑
nk

(En,k+1 − Enk) = −2

h

∑
nk

(En,kmax − En,kmin
) .

It is not trivial to prove this equation. It was done by R. Prange using gauge considerations.
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Proof :
The main procedure is a s follows. We have specified periodic boundary conditions
along y-axis. Consider the system as a cylinder and introduce an auxiliary constant
vector-potential along y axis as 2πα/Ly. The vector-potential of such a type can be
eliminated by the gauge transform

ψ → exp(2παy/Ly)ψ .

This function can satisfy periodic boundary conditions only if α is integer. Thus the
extended states which extend from 0 to Ly must depend on α.

The current operator can be written as Î = (−e/h)dH/dα, while the average current
is

I = 〈Î〉 = − e
h

d

dα

∑
nk

Enk(α) .

According to the construction of the quantum number k the introduction of the
vector-potential leads to the replacement k → k + α. Thus

En,k|α=1 = En,k+1|α=0 .

Replacing the derivative by the average value we get the result given above.

Thus we come to the following picture. as the Fermi level passes the regions of the
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Density of states

E
ne

rg
y

Figure 6.3: Density of states in 2DEG in magnetic field.

extended states the steps in Hall resistance and peaks at the longitudinal resistance occur.
As we have shown, the current is independent of the density of states, only the number of
occupied extended states is important.

Now we have to remember that the state with kmax(kmin) correspond to the upper
(lower) edge of the sample if we map the quantum number k to the centers of gravity of
the states. Thus we come in a natural way to edge states.
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6.3 Edge Channels and Adiabatic Transport

The quantization of the conductance of the ballistic channel arises from the finite number of
propagating modes each of which can carry only a very specific current. Thus it is tempting
to consider the modes of an ideal finite system embedded into an external magnetic field. In
this simplified picture we can obtain some understanding concerning the nature of localized
and extended states.

Let us start from a ideal electron system confined by the potential V (x) in the presence
of the magnetic field H ‖ z. For a single spin component we have the Hamiltonian

H =
p2
x

2m
+

[py + (eH/c)x]2

2m
+ V (x) .

It is natural to look for a solution in the form (H commutes with py!)

|n, k〉 = ψnk(x)eiky

where ~k is the eigenvalue of py. The average velocity for such a state is

vn(k) =

〈
n, k

∣∣∣∣py + (eH/c)x

m

∣∣∣∣n, k〉 =

〈
n, k

∣∣∣∣∂H∂py
∣∣∣∣n, k〉 =

1

~

dEn(k)

dk
.

It is easy to calculate such a velocity for a parabolic confinement,

V (x) =
1

2
mω2

0x
2 .

The result is

v(k) =
~k

M
=
~k

m

1

1 + (ωc/ω0)2
.

To understand what is going on let us consider a classical orbit with the center (X, Y ).
Then one can write

x = X + vy/ωc , y = Y − vx/ωc .

The quantity rc = v/ωc is the cyclotron radius of the orbit. We have two constants of
motion, the energy E and X. In a long strip of width W the trajectories can be classified
as a cyclotron orbits , skipping orbits, or traversing trajectory. In the (X,E) space such
trajectories are separated by the line

(X ±W/2)2 = r2
c .

According to quantum mechanics, the motion is quantized, and we come to the following
picture of quantum terms The cyclotron orbits (solid lines) correspond to Landau level,
and they have zero group velocity. We have not shown traversing trajectories which cor-
respond to higher energies. Dashed lines reproduce two sets of edge states (corresponding
to skipping orbits). These sets carry the currents in opposite directions.
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Figure 6.4: Typical electron trajectories in a 2D strip in magnetic field.
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Figure 6.5: Electron terms in a 2D strip in magnetic field.

If the Fermi level is situated between the Landau levels, only the edge states can con-
tribute to the current. Their dispersion law can be obtained (approximately) from the
Bohr-Sommerfeld quantization condition,

h−1

∮
px dx+ γ = 2πn , n = 1, 2, ...

One can show that for the rigid boundary the phase shift of the skipping orbit γ = π/2,
while

px = mvx = (eH/c)(Y − y) .

Thus,
1

a2
H

∮
(Y − y) dx = 2π

Φ

Φ0

= 2π
(
n− γ

2π

)
.

Consider an electron at the Fermi level. Its energy consists of (n − 1/2)~ωc (+ spin
contribution which I do not discuss now), as well the the part

EG = εF − (n− 1/2)~ωc
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due to electrostatic potential created by the edges, as well as by disorder. In an external
potential, the center of the orbit moves with the drift velocity

vd(R) =
c

eH
[∇V (R)×H]

which is parallel to the equipotentials. That can be easily shown from classical mechanics
in a magnetic field. The typical spread of the wave function along the guiding center is
spread within the range of magnetic length aH . Now we can map the classical picture to
quantum mechanics according to ~k → −x(eH/c). Thus, if the typical scale of the random
potential of the disorder is greater than the magnetic length, we arrive at the picture.
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Figure 6.6: Electron terms in the presence of long-range disorder.

Assume that the edges are in a local equilibrium. Thus if there is a difference δζ chemical
potentials between the edges,then each channel contributes (e/h)δζ to the current in the
Hall direction. The system appears robust because to obtain a inter-channel exchange
one needs tunneling with exponentially low probability. Actually we have an almost ideal
ballistic conductor and the only difference with the systems discussed earlier is that the
edge channels with different directions of the current do not overlap in space.

In a typical realistic situation, the contacts are out of local equilibrium and the measured
resistance depends on the properties of contacts. Consider for example, a situation when
the edge channel at the lower edge are in equilibrium at chemical potential EF , while the
edge channel at the upper edge are not in local equilibrium. Then the current at the upper
edge is not equipartitioned between N modes. Let fn is the fraction of the total current I
that is carried by by states above EF in the nth channel at the upper edge, In = fnI. The
voltage contact at the upper edge will measure a chemical potential which depends on how
it is coupled to each of the edge channels. The transmission probability Tn is the fraction
of the current In that is transmitted through the voltage probe to a reservoir at chemical
potential EF + δζ. The incoming current

Iin =
N∑
n

TnfnI, with
∑
n

fn = 1, (6.2)
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has to be balanced by an outgoing current,

Iout =
e

h
δζ (N −R) =

e

h
δζ
∑
n

Tn , (6.3)

since the voltage probe draws no net current. Thus the Hall resistance,

Rh =
δζ

eI
=

h

e2

(∑
n

Tnfn

)(∑
n

Tn

)−1

. (6.4)

The Hall conductance remains quantized only if fn = 1/N , or at Tn = 1. The first case
corresponds to local equilibrium, while the second case corresponds to an ideal contact.
The Landauer-Büttiker formalism forms the basis on which anomalies in the QHE due
to absence of local equilibrium in combination with non-ideal contacts can be treated
theoretically.

This is a simplified picture of the integer quantum Hall effect in the random potential.
The real life is much more complicated. In particular, there exists an extremely interesting
fractional quantum Hall effect, which manifests itself at fractional values of the filling
factor. We do not discuss this effect in the present course.

Role of localization

As we have seen, at H = 0 a 2D system with disorder should have its states localized at
all energies. However, only extended states are sensitive to the flux and can provide the
QHE. At the same time, ranges of energies with only localized states are needed to pin EF
there and have finite plateaus. Thus, introduction of magnetic field must delocalize some
states. As we have seen, extended modes appear near edges. However, extended states in
a magnetic field are present also in the bulk of the conductor.

To discuss this phenomenon let us recall the main relevant quantities. First, let us note
that the condition

ωcτ � 1, or rc � `, rc = vF/0c

for cyclotron motion is fully classical. In terms of quantum mechanical length, aH =√
cH/eH the classical cyclotron radius rc can be written as

rc ∼ kFa
2
H ∼ aH

√
EF~ωc ∼ aH

√
N

where N is the number of full Landau levels. The weak localization regime corresponds to
the inequality

aH � ` ,

while the intermediate regime where aH � rc while rc can be comparable with ` also exists.

Strong magnetic field, ωcτ � 1, rc � `.
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As we have discussed, in a uniform electric field the drift velocity directed along [E×H]
appears, vd = c(E/H). This concept can be generalized for the case of a smooth random
potential V (x) with does not change a lot on the scale of cyclotron motion. Then, it rc is
much less than the correlation length d of the random potential, the guiding center moves
along the equipotential line V (r) = V . If its orbit is closed and embeds the area A(V ),
then the typical frequency is

ωd
2π

=

[∮
dl

vd

]−1

=
2c

H

[∫
dl dx⊥
dV

]−1

=
2c

H

∆V

∆A
,

where dx⊥ is an element of length in the direction of the potential gradient. Such a slow
motion can be quantized for any Landau levels into locally equidistant levels with the
separation ~0d. The area between two quantized orbits is given by the relation

H ∆A =
~c

e
= Φ0 ; ∆A = 2πa2

H .

Thus the flu of H in the area per state in a given Landau level corresponds to a flux
quantum, as for free electron.

Let us assume that the amplitude of the random potential is much less than ~ωc, so
there is no inter-Landau-level mixing. Then the potential energy of a properly quantized
levels should be added to ~ωc(j + 1/2) for jth Landau band. The levels correspond to
the orbits running around the potential “hills”, or inside potential “lakes”. Both kinds
of states are localized. There is one and only one energy, Ec, (in 2D case) at which
the equipotential curves span the whole system (imagine filling up of the potential V (r)
“terrain” with water). The characteristic size of the orbit, ξp, may be defined by the r.m.s.
of the area enclosed by the equipotential contours for the localized states. It must blow up
at E → Ec,

ξp ∼ |E − Ec|−νp , νp & 1 .

Such an orbit provides the way to transfer an electron between the edges.
There is also a very interesting intermediate situation when

aH � `� rc , or ωcτ � 1 .

As was shown by Khmelnitskii (1984), even in this region QHE plateaus can exist which
are irrelevant to Landau levels.

6.4 Fractional Quantum Hall Effect

Fractional quantum Hall effect (FQHE) was discovered by the group of Tsui et Bell Lab-
oratories [31]. Using a high-mobility GaAs/AlGaAs heterostructures they observed quan-
tization of Hall conductance at filling factors ν = 1/3 and 2/3 at very low temperatures
(below 1 K). Later more rich structure, as shown in Figs. 6.7 and 6.8 at fractional fill-
ing factors was discovered. It appears that only account of of Coulomb interaction leads
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Figure 6.7:

to understanding of the problem. Now the studies of FQHE belong to the most active
area of research. Below we shall provide a very brief sketch of the problems regarding
electron-electron interaction in magnetic field and FQHE.

Few electron with Coulomb interaction

The role of electron-electron interaction is determined by the relation between the mean
free distance between electrons, rs, and the Bohr radius, aB = ε~2/me2. At rs � aB one
can use the usual mean field description of interacting electrons, considering screening,
plasmons, charge density waves, etc. However, at rs ≥ aB the interaction energy becomes
larger than the average kinetic energy. As a result, there exists a strong electron-electron
correlation, and the electrons tend to crystallize. It is known that magnetic field enhances
these effects.

To get some understanding let us start with more simple problem of few electrons
in a magnetic field. Historically, these studies appeared important because they led to
discovery of a new state, the incompressible electron liquid, that is believed to transform
into (Wigner) crystal at very low densities.
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Figure 6.8: Recent results on the fractional quantum Hall effect.

Two electrons. Let us discuss the case of 2 electrons in a very strong magnetic field,
~ωc ≥ e2/εaH . This inequality means that Landau levels are not mixed by the Coulomb
interaction (see below).

Using symmetric gauge, A = (−Hy/2, Hx/2, 0)and introducing polar coordinates we
easily obtain zeroth approximation Hamiltonian

H0 = − ~
2

2m
∇2 +

mω2
cρ

2

8
+
~ωc
2i

∂

∂ϕ
,

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
.

This Hamiltonian commutes with the angular momentum,

lz =
~

i

∂

∂ϕ
.

Thus it is natural to classify the states using the eigenvalues ~m of the angular momentum,
lz. The eigenfunctions have the form

ψnm(ρ, ϕ) =
Nnm

a
|m|+1
H

ρ|m|eimϕ exp

(
− ρ2

4a2
H

)
L|m|n

(
ρ2

2a2
H

)
. (6.5)
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Here n is non-negative integer, m is integer, L
|m|
n are Laguerre polynomials, while Nnm =√

n!/2π2|m|(|m|+ n) are normalization factors. The energy eigenvalues are

Enm = ~ωc[n+ (|m| −m+ 1)/2] . (6.6)

The lowest Landau level corresponds to n = 0, m > 0. The Coulomb energy for the lowest
state can be easily calculated as

EC = 〈0m|e2/εr|0m〉 =
e2

εaH

Γ(m+ 1/2)

m!
. (6.7)

At large m is decays as m−1/2.
Two electrons are described by the Hamiltonian

H0(1) +H0(2) +Hint .

It can be rewritten through the center-of-mass coordinate, R = (r1 + r2)/
√

2, and the
relative coordinate, r = (r1 − r2)/

√
2, as

H0(R) +H0(r) +Hint(r
√

2) .

As a result, the center-of-mass motion is separated, and we look for a solution in the form

Ψ(R, r) = φ(R)ψ(r) .

Now we are left with a single-particle problem for the relative motion.
Since the interaction energy is radially-symmetric one can look for a solution in the

form
ψ(r) = R(r)e−imϕ

with odd m because of the Pauli principle [ψ(−r) = −ψ(r)]. The radial Schrödinger
equation is easily written in the dimensionless units as

−1

2

d2R
dr2
− 1

r

dR
dr

+
1

2

(
m2

r2
+m+

r2

4
− α

r

)
R = ER , (6.8)

where r is measures in units of aH , E is measured in the units of ~ωc, while dimensionless
interaction constant is α =

√
2e2/εaH~ωc. At large magnetic field this equation can be

solved perturbatively with respect to α. In the lowest approximation we obtain:

E
(1)
0m =

~ωc
2

+
e2

εaH

Γ(m+ 1/2)

m!
. (6.9)

The energy of the center-of-mass motion must be added.
We find that the interaction destroys the degeneracy of the lowest Landau level. At

large m the correction decreases because the electrons are less sensitive to interaction at
long distances.



6.4. FRACTIONAL QUANTUM HALL EFFECT 89

Three electrons. For 3 electrons we can also strip the center-of-mass motion. It can be
done by the transform ρ = Or where

O =

 1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6

1/
√

3 1/
√

3 1/
√

3

 .

After the transform the interaction Hamiltonian can be written as

Hint =
e2

ε
√

2

(
1

ρ1

+
2

|ρ1 +
√

3ρ2|
+

2

|
√

3ρ2 − ρ1|

)
. (6.10)

Again, we can write the eigen function as a product

Ψ(ρ1,ρ2,ρ3) = φ(ρ3)ψ(ρ1,ρ2)

and in this way to reduce the problem to a two-particle one.
An important point is that the probability density must be invariant under rotation

about multiples of π/3. The resulting Hamiltonian also commutes with the total angular
momentum, L. Then the states can be classified according to eigenvalues M of the orbital
momentum. It was shown by R. Laughlin that a proper complete set to diagonalize a
3-electron system can be written as

|m,m′〉 =
F

2

[
(z2 + iz1)3m − (z2 − iz1)3m

]
(z2

1 + z2
2)m

′
e−(|z1|2+|z2|2) . (6.11)

Here zi = ξi + ηi, ξ, eta are the Cartesian components of the vector ρi/aH , F is a normal-
ization factor. The states (6.11) are the eigenstates of the total angular momentum with
M = 3(m+m′).

To diagonalize the system one has to solve the secular equation

det |eδmmδm′m′ − 〈mm′|Hint|mm′〉| = 0 .

The crucial point is that the basis (6.11) is an extremely good starting approximation since
off-diagonal elements of Hint are typically at least 10 times less than the diagonal ones.

The minimum angular momentum for which a non-degenerate solution exists is M =
3 (m = 0, m′ = 1). The next solution corresponds to M = 9, it is combined from the
states (3,0) and (1,3). These states have the lowest energy at Hint = 0. The “charge
density” for the state with M = 9 is 1/3 comparing to the state with M = 3. Since the
angular momentum is conserved and the angular momentum corresponds to the area of an
electronic state, the 3 electrons are “incompressible”.

Fractional quantum Hall states

It is impossible to diagonalize exactly the system of many electron states. An extremely
effective approximate guess was suggested by R. Laughlin which we shall discuss for the
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case of very large magnetic field when only the lowest Landau level is important. The
single-electron states for that case can be written as

〈r|0m〉 =
Nm

aH
zme−|z|

2/4 ,

where z = x + iy. The complete set of N -electron states with total angular momentum
M =

∑N
ν=1 mν are the Slater determinants

Ψ(1 . . . N) =
∑

P (ν1...νN )

(−1)P
N∏
µ=1

Nmµz
mµ
νµ exp

(
−1

4

N∑
α=1

|zα|2
)
.

Since the ground state in the independent band approximation is a combination of Slater
determinants, its general form is

Ψ(1 . . . N) =
∏
j<k

f(zj − zk) exp

(
−1

4

N∑
α=1

|zα|2
)
.

There are several requirements to the functions f(z):

• The function f(z) must be a polynomial of z;

• Since Ψ should be a Fermion state, f(−z) = −f(z);

• Ψ can be chosen as an eigenfunction of the total angular momentum. Therefore, the
function f(z) has to be homogeneous.

The simplest choice is
f(z) = zm , (n odd) .

Thus the approximate wave function has the form

Ψ(1 . . . N) =
∏
j<k

(zj − zk)m exp

(
−1

4

N∑
α=1

|zα|2
)
. (6.12)

The Laughlin state (6.12) describes a liquid-like system. The two-particle correlation func-
tion

g
(m)
2 (zz, z2) =

∫ N∏
ν=3

drν |Ψ(1 . . . N)|2

at small distances is proportional to |z1 − z2|m that reflects the Pauli principle for the
electrons. The smallest possible value of m is 3. The total angular momentum is just
M = Nm, while the area covered by the electrons is A = N(2πma2

H). Thus the average
electron density is (2πma2

H)−1, and the filling factor is ν = 1/m. To keep electrostatic
stability one has to add the positive background.
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The estimate for the Coulomb energy for the Laughlin state can me obtained as

E
(m)
C =

N(N − 1)

2A

e2

ε

∫
d2r

r

[
g

(m)
2 (r)− 1

]
.

Because the correlation function decay strongly at small distances the incompressible liquid
state appears more stable than the Wigner crystal. An interesting fact is that the Laughlin
state appears the exact ground state for ν = 1/m in the case of contact interaction,
Hint(r) ∝ δ(r).

As a consequence of the electron-hole symmetry it is easy to find the state corresponding
to the filling factor (1− ν) if the state for ν is known.

Elementary excitations

Elementary excitation are important both for transport and dynamics. Changing of energy
of the electron system can be achieved by its compression, or, equivalently, by changing of
angular momentum while keeping the neutralizing background.

In other words, it means that new quasielectrons of quasiholes are introduced into the
state Ψν if ν 6= 1/m. An introduction of a quasihole can be represented as

Ψ+
ν = A+(z0)Ψν(z1 . . . zn) , A+(z0) =

N∏
j=1

(zj − z0) .

Let us estimate the effective charge of this excitation. The average area per particle which
is covered in the state with filling factor ν = 1/m is (N − 1)(2πma2

H). It can be seen by
direct calculation of the integral. The corresponding charge density is

ρ0 =
−Ne

(N − 1)(2πma2
H)
≈ − e

2πma2
H

.

Thus, each electron occupies the area with m flux quanta. Its charge must be compensated
by a positive background.

In the state Ψ+
ν the maximum angular momentum per particle is increased by 2πa2

H .
This corresponds to the change in the charge density which is equivalent to the positive
charge +e/m.

Quasielectrons can be created in a similar way,

Ψ−ν = A−(z0)Ψν(z1 . . . zn) , A+(z0) =
N∏
j=1

(
∂

∂zj
− z∗0

)
.

Here the partial derivative acts only on the polynomial part of the wave function Ψν leaving
alone the Gaussian part. It can be shown that the effective charge of the quasielectron is
−e/m.

The gaps between the ground and excited states were observed directly from tempera-
ture dependences of conductance. It appears that the quasiparticles can be considered as
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particle with so-called fractional statistics – anyons. Very interesting collective excitations
were also predicted and observed experimentally by inelastic light scattering. H. Störmer,
D. Tsui and R. Laughlin were awarded by the Nobel Prize 1998 for their discovery of
FQHE.

However, the story is not over. Very specific features of Hall conductance were observed
at ν = p/q where p, q are integers, both for odd and even denominator q. These features
were not explained by original theory by Laughlin. It appears, that at odd denominators
the electrons also condense in some quantum liquids. However, the properties of that
liquids differ significantly from those of the incompressible Laughlin liquid.

The above discussion is definitely not an “explanation” of FQHE. It just demonstrates
some basic trends in the field. More work has to be done to understand the whole physical
picture and to construct a proper transport theory.



Chapter 7

Noise in mesoscopic systems

Shot noise, the time-dependent fluctuations in the electrical current due to the discreteness
of the electron charge.

The shot-noise power in small conductors possesses special features which are important
both for understanding correlations phenomena in mesoscopic systems and for application
of mesoscopic devices. The noise is maximal if the electron transmission through the system
is fully uncorrelated. This maximal value is called the Poisson limit. It mesoscopic systems
it can be suppressed as a result of correlations in the electron transmission imposed by the
Pauli principle. This suppression takes on simple universal values in a symmetric double-
barrier junction (suppression factor 1

2
), a disordered metal (factor 1

3
), and a chaotic cavity

(factor 1
4
). Loss of phase coherence has no effect on this shot-noise suppression, while

thermalization of the electrons due to electron-electron scattering increases the shot noise
slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved
phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.

Below we discuss these processes following the review Ref. [19].

7.1 Current fluctuations

In 1918 Schottky reported that in ideal vacuum tubes, where all sources of spurious noise
had been eliminated, there remained two types of noise in the electrical current, described
by him as the Wärmeeffekt and the Schroteffekt. The first type of noise became known
as Johnson-Nyquist noise, or simply thermal noise. We discussed this type of noise in
connection with fluctuation-dissipation theorem. It is due to the thermal motion of the
electrons and occurs in any conductor. The second type of noise is called shot noise, caused
by the discreteness of the charge of the carriers of the electrical current. Not all conductors
exhibit shot noise.

Noise is characterized by its spectral density or power spectrum P (ω), which is the

93
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Fourier transform at frequency ω of the current-current correlation function,

P (ω) = 2

∞∫
−∞

dt eiωt〈∆I(t+ t0)∆I(t0)〉 . (7.1)

Here ∆I(t) denotes the time-dependent fluctuations in the current at a given voltage V
and temperature T. The brackets 〈· · · 〉 indicate an ensemble average or, equivalently, an
average over the initial time t0. Both thermal and shot noise have a white power spectrum
— that is, the noise power does not depend on ω over a very wide frequency range. Shot
noise (V 6= 0, T = 0) is more interesting then the thermal one, because it gives information
on the temporal correlation of the electrons, which is not contained in the conductance.
In devices such as tunnel junctions, Schottky barrier diodes, p-n junctions, and thermionic
vacuum diodes, the electrons are transmitted randomly and independently of each other.
The transfer of electrons can be described by Poisson statistics, which is used to analyze
events that are uncorrelated in time. For these devices the shot noise has its maximum
value

P = 2eI ≡ PPoisson , (7.2)

proportional to the time-averaged current I. 1 Correlations suppress the low-frequency
shot noise below PPoisson. One source of correlations, operative even for non-interacting
electrons, is the Pauli principle, which forbids multiple occupancy of the same single-
particle state. A typical example is an ideal ballistic point contact, where P = 0 because
the stream of electrons is completely correlated by the Pauli principle in the absence of
impurity scattering.

Progress in nanofabrication technology has revived the interest in shot noise, because
nanostructures allow measurements to be made on “mesoscopic” length scales that were
previously inaccessible. The mesoscopic length scale is much greater than atomic dimen-
sions, but small compared to the scattering lengths associated with various inelastic pro-
cesses. Mesoscopic systems have been studied extensively through their conductance. Noise
measurements are much more difficult, but the sensitivity of the experiments has made a
remarkable progress in the last years.

To analyze the noise properties we shall apply scattering formalism. Incoming and
outgoing waves are specified as shown in Fig. 7.1 Each lead contains N incoming and N
outgoing modes at energy ε.2 The incoming and outgoing modes are related by a 2N ×2N
scattering matrix S (

O1

O2

)
= S

(
I1

I2

)
, (7.3)

where I1, O1, I2, O2 are the N -component vectors denoting the amplitudes of the incoming
(I) and outgoing (O) modes in lead 1 and lead 2. The scattering matrix can be decomposed

1Equation (7.2) is valid for ω < τ−1, with τ the width of a one-electron current pulse. For higher
frequencies the shot noise vanishes.

2We assume only elastic scattering so that energy is conserved.
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S1

I2

O2O1

I1

Figure 7.1: Schematic representation of the transport through the conductor. Incoming
states (I) are scattered into outgoing states (O), by a scattering region (dashed). A cross
section in lead 1 and its coordinates are indicated.

in N ×N reflection and transmission matrices,

S =

(
s11 s12

s21 s22

)
≡
(

r t′

t r′

)
, (7.4)

where the N × N matrix sba contains the amplitudes sbn,am from incoming mode m in
lead a to outgoing mode n in lead b. Because of flux conservation S is a unitary matrix.
Moreover, in the presence of time-reversal symmetry S is symmetric.

The current operator in lead 1 is given by

Î(t) =
e

h

∑
α,β

∞∫
0

dε

∞∫
0

dε′ Iαβ(ε, ε′) â†α(ε) âβ(ε′) eit(ε−ε
′)/~ , (7.5)

where â†α(ε) [âα(ε)] is the creation [annihilation] operator of scattering state ψα(r, ε). We
have introduced the indices α ≡ (a,m), β ≡ (b, n) and the coordinate r = (x,y). The
matrix element Iαβ(ε, ε′) is determined by the value of the current at cross section S1 in
lead 1,

Iαβ(ε, ε′) = 1
2

∫
S1

dy
{
ψα(r, ε)[v̂xψβ(r, ε′)]∗ + ψ∗β(r, ε′)v̂xψα(r, ε)

}
. (7.6)

Here, v̂x is the velocity operator in the x-direction. At equal energies, Eq. (7.6) simplifies
to

Iam,bn(ε, ε) = δa1δabδmn −
N∑
p=1

s1p,am(ε) s∗1p,bn(ε) . (7.7)

The average current follows from

〈â†α(ε)âβ(ε′)〉 = δαβδ(ε− ε′)fa(ε) , (7.8)

where fa is the Fermi-Dirac distribution function in reservoir a:

f1(ε) = f(ε− EF − eV ) , (9a)

f2(ε) = f(ε− EF ) , (9b)

f(x) = [1 + exp(x/kBT)]−1 , (9c)
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with Fermi energy EF . The result is 3

〈Î(t)〉 =
e

h

∑
α

∞∫
0

dεfa(ε)Iαα(ε, ε) =
e

h

∞∫
0

dε [f1(ε)− f2(ε)] Tr t(ε)t†(ε) , (7.10)

where we have substituted Eq. (7.7) and used the unitarity of S. The linear-response
conductance, G ≡ limV→0〈I〉/V , becomes

G =
e2

h

∞∫
0

dε

(
−∂f
∂ε

)
Tr t(ε)t†(ε) . (7.11)

At zero temperature we reproduce the Landauer formula (per spin)

G =
e2

h
Tr t t† =

e2

h

N∑
n=1

Tn . (7.12)

Here t is taken at EF and Tn ∈ [0, 1] is an eigenvalue of t t†. The conductance is thus fully
determined by the transmission eigenvalues. Knowledge of the transmission eigenstates,
each of which can be a complicated superposition of incoming modes, is not required.

In order to evaluate the shot-noise power we substitute the current operator (7.5) into
Eq. (7.1) and determine the expectation value. It can be shown from direct quantum-
mechanical calculation that

〈â†1â2â
†
3â4〉 − 〈â

†
1â2〉〈â

†
3â4〉 = δ14δ23f1(1− f2) ≡ ∆1234 , (7.13)

where e.g. δ12 stands for δαβδ(ε−ε′). Equation (7.13) shows that there are cross correlations
between different scattering states. Although this bears no effect on the time-averaged
current, it is essential for the current fluctuations. For the noise power at low-frequancy
limit one finds,

P = 2
e2

h

∞∫
0

dε
{

[f1(1− f2) + f2(1− f1)] Tr t t†(1− t t†)

+ [f1(1− f1) + f2(1− f2)] Tr t t†t t†
}
, (7.14)

where we have again used the unitarity of S.
Equation (7.14) allows us to evaluate the noise for various cases. Below we will assume

that eV and kBT are small enough to neglect the energy dependence of the transmission
matrix, so that we can take t at ε = EF . Let us first determine the noise in equilibrium,
i.e. for V = 0. Using the relation f(1− f) = −kBT∂f/∂ε we find

P = 4kBT
e2

h
Tr t t† = 4kBT

e2

h

N∑
n=1

Tn , (7.15)

3Note that in the above derivations the absence of spin and valley degeneracy has been assumed for
notational convenience. It can be easily included.
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which is indeed the Johnson-Nyquist formula. For the shot-noise power at zero temperature
we obtain

P = 2eV
e2

h
Tr t t†(1− t t†) = 2eV

e2

h

N∑
n=1

Tn(1− Tn) . (7.16)

One notes, that P is again only a function of the transmission eigenvalues.

It is clear from Eq. (7.16) that a transmission eigenstate for which Tn = 1 does not
contribute to the shot noise. This is easily understood: At zero temperature there is a non-
fluctuating incoming electron stream. If there is complete transmission, the transmitted
electron stream will be noise free, too. If Tn decreases, the transmitted electron stream
deviates in time from the average current. The resulting shot noise P is still smaller than
PPoisson, because the transmitted electrons are correlated due to the Pauli principle. Only
if Tn � 1, the transmitted electrons are uncorrelated, yielding full Poisson noise.

The generalization of Eq. (7.16) to the non-zero voltage, non-zero temperature case is

P = 2
e2

h

N∑
n=1

[
2kBTT 2

n + Tn(1− Tn)eV coth(eV/2kBT)
]
. (7.17)

The crossover from the thermal noise (7.15) to the shot noise (7.16) depends on the trans-
mission eigenvalues.

7.2 Two Simple Applications

The above results are valid for conductors with arbitrary (elastic) scattering. If the trans-
mission eigenvalues are known, the conduction and noise properties can be readily calcu-
lated. Below, this is illustrated for two simple systems. More complicated conductors are
discussed in Secs. 7.4–7.4.

Tunnel barrier

In a tunnel barrier, electrons have a very small probability of being transmitted. We model
this by taking Tn � 1, for all n. Substitution into the formula for the shot noise (7.16) and
the Landauer formula for the conductance (7.12) yields P = PPoisson at zero temperature.
For arbitrary temperature we obtain from Eq. (7.17),

P = coth(eV/2kBT)PPoisson . (7.18)

This equation, describes the crossover from thermal noise to full Poisson noise. For tunnel
barriers this crossover is governed entirely by the ratio eV/kBT and not by details of the
conductor. This behavior has been observed in various systems.
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Figure 7.2: (a) Conductance G (dashed line) and shot-noise power P (full line) versus
Fermi energy of a two-dimensional quantum point contact, according to the saddle-point
model, with ωy = 3ωx. (b) Experimentally observed G and P versus gate voltage Vg
(unpublished data from Reznikov et al. similar to the experiment of Ref. [32], but at a
lower temperature T = 0.4 K).

Quantum Point Contact

As we know, the conductance displays a stepwise increase in units of G0 as a function of Vg.
At the conductance plateaus the shot noise is absent, as follows from Eq. (7.16). However,
in between the plateaus, where the conductance increases by G0, there is a transmission
eigenvalue which is between 0 and 1. As a consequence, the shot noise has a peak. Results
for the conductance and the shot-noise power are displayed in Fig. 7.2a. The shot noise
peaks in between the conductance plateaus and is absent on the plateaus. For large N , the
peaks in the shot noise become negligible with respect to the Poisson noise, in agreement
with the classical result.

The prediction of this quantum size-effect in the shot noise formed a challenge for
experimentalists. Recent experiments at high frequencies by Reznikov et al. [32] have
unambiguously demonstrated the occurrence of suppressed shot noise on the conductance
plateaus. Experimental data of Reznikov et al. are shown in Fig. 7.2b.

7.3 Phase Breaking, Thermalization,

and Inelastic Scattering

Noise measurements require rather high currents, which enhance the rate of scattering
processes other than purely elastic scattering. The phase-coherent transmission approach
is then no longer valid. Below, we discuss a model in which the conductor is divided
in separate, phase-coherent parts connected by charge-conserving reservoirs. This model
includes the following types of scattering:

• Quasi-elastic scattering. Due to weak coupling with external degrees of freedom the
electron-wave function gets dephased, but its energy is conserved. In metals, this
scattering is caused by fluctuations in the electromagnetic field.
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• Electron heating. Electron-electron scattering exchanges energy between the elec-
trons, but the total energy of the electron gas is conserved. The distribution func-
tion is therefore assumed to be a Fermi-Dirac distribution at a temperature above
the lattice temperature.

• Inelastic scattering. Due to electron-phonon interactions the electrons exchange en-
ergy with the lattice. The electrons emerging from the reservoir are distributed
according to the Fermi-Dirac distribution, at the lattice temperature T.

f  (  )2 ε

f   (  )12 ε

f  (  )1 ε 1 2

Figure 7.3: Additional scattering inside the conductor is modeled by dividing it in two
parts and connecting them through another reservoir. The electron distributions in the left
and the right reservoir, f1(ε) and f2(ε), are Fermi-Dirac distributions. The distribution
f12(ε) in the intermediate reservoir depends on the type of scattering.

The model is depicted in Fig. 7.3. The conductors 1 and 2 are connected via a reservoir with
distribution function f12(ε). The time-averaged current Im through conductor m = 1, 2 is
given by

I1 = (G1/e)

∫
dε [f1(ε)− f12(ε)] , (19a)

I2 = (G2/e)

∫
dε [f12(ε)− f2(ε)] . (19b)

The conductance Gm ≡ 1/Rm = G0

∑N
n=1 T

(m)
n , with T

(m)
n the n-th transmission eigenvalue

of conductor m. We assume small eV and kBT, so that the energy dependence of the
transmission eigenvalues can be neglected.

Current conservation requires that I1 = I2 ≡ I. The total resistance of the conductor
is given by Ohm’s law,

R = R1 +R2 , (7.20)

for all three types of scattering that we consider. 4

The time-averaged current (7.19) depends on the average distribution f12(ε) in the
reservoir between conductors 1 and 2. In order to calculate the current fluctuations, we
need to take into account that this distribution varies in time. We denote the time-
dependent distribution by f̃12(ε, t). The fluctuating current through conductor 1 or 2
causes electrostatic potential fluctuations δφ12(t) in the reservoir, which enforce charge
neutrality. Assuming that the reservoir has a Fermi-Dirac distribution f̃12(ε, t) = f [ε −

4The model is not suitable for transport in the ballistic regime or in the quantum Hall effect regime,
where a different type of “one-way” reservoirs is required.
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EF −eV12−eδφ12(t)], with EF +eV12 the average electrochemical potential in the reservoir.
As a result, it is found that the shot-noise power P of the entire conductor is given by

R2P = R2
1P1 +R2

2P2 . (7.21)

In other words, the voltage fluctuations add. The noise powers of the two segments depend
solely on the time-averaged distributions,

Pm = 2Gm

∫
dε [fm(1− fm) + f12(1− f12)] + 2Sm

∫
dε (fm − f12)2 , (7.22)

where Sm ≡ G0

∑N
n=1 T

(m)
n (1 − T (m)

n ). The analysis first given in Ref. [33] is easily gener-

alized to arbitrary distribution f12. Then, we have f̃12(ε, t) = f12[ε − eδφ12(t)]. It follows
that Eqs. (7.21) and (7.22) remain valid, but f12(ε) may be different. Let us determine the
shot noise for the three types of scattering.

Quasi-elastic scattering. Here, it is not just the total current which must be conserved,
but the current in each energy range. This requires

f12(ε) =
G1f1(ε) +G2f2(ε)

G1 +G2

. (7.23)

We note that Eq. (7.23) implies the validity of Eq. (7.20). Substitution of Eq. (7.23) into
Eqs. (7.21) and (7.22) yields at zero temperature the result:

P =
(
R4

1S1 +R4
2S2 +R1R

2
2 +R2

1R2

)
R−3 PPoisson . (7.24)

Electron heating. We model electron-electron scattering, where energy can be exchanged
between the electrons at constant total energy. We assume that the exchange of energies
establishes a Fermi-Dirac distribution f12(ε) at an electrochemical potential EF + eV12 and
an elevated temperature T12. From current conservation it follows that

V12 = (R2/R)V . (7.25)

Conservation of the energy of the electron gas requires that T12 is such that no energy is
absorbed or emitted by the reservoir. This implies

T2
12 = T2 +

V 2

L0

R1R2

R2
, (7.26)

with the Lorentz number L0 ≡ 1
3
(πkB/e)

2. At zero temperature in the left and right

reservoir and for R1 = R2 we have kBT12 = (
√

3/2π)eV ' 0.28eV . For the shot noise at
T = 0, we thus obtain using Eqs. (7.21) and (7.22) the result:

P =
{
R3

1S1 +R3
2S2 + 1

π

√
3R1R2

[
R1(1−R1S1) +R2(1−R2S2)

+ 2R2
1S1 ln

(
1 + e−π

√
R1/3R2

)
+ 2R2

2S2 ln
(

1 + e−π
√
R2/3R1

)]}
R−2 PPoisson . (7.27)
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Inelastic scattering. The distribution function of the intermediate reservoir is the Fermi-
Dirac distribution at the lattice temperature T, with an electrochemical potential µ12 ≡
EF + eV12, where V12 is given by Eq. (7.25). This reservoir absorbs energy, in contrast to
the previous two cases. The zero-temperature shot-noise power is given by

P =
(
R3

1S1 +R3
2S2

)
R−2 PPoisson . (7.28)

This model will be applied to double-barrier junctions, and disordered conductors in the
following sections. Quite generally, we will find that quasi-elastic scattering has no effect
on the shot noise, while electron heating leads to a small enhancement of the shot noise.
Inelastic scattering suppresses the shot noise in most cases, but not in the double-barrier
junction.

7.4 Double-Barrier Junction

Resonant Tunneling

Below we will only consider the zero-frequency, low-voltage limit, in order to treat the
double-barrier junction on the same footing as the other systems described in these lectures.
We assume high tunnel barriers with mode-independent transmission probabilities Γ1,Γ2 �
1.

The transmission eigenvalues through the two barriers in series, as we have derived
above, can be re-written as,

Tn =
Γ1Γ2

2− Γ1 − Γ2 − 2
√

1− Γ1 − Γ2 cosφn
, (7.29)

where φn is the phase accumulated in one round trip between the barriers. The density
ρ(T ) ≡ 〈

∑
n δ(T−Tn)〉 of the transmission eigenvalues follows from the uniform distribution

of φn between 0 and 2π,

ρ(T ) =
NΓ1Γ2

π(Γ1 + Γ2)

1√
T 3(T+ − T )

, T ∈ [T−, T+] , (7.30)

ρ(T ) = 0 otherwise, with T− = Γ1Γ2/π
2 and T+ = 4Γ1Γ2/(Γ1 + Γ2)2. The density (7.30) is

plotted in Fig. 7.4a.
The average conductance,

〈G〉 = G0

1∫
0

dT ρ(T )T = G0N
Γ1Γ2

Γ1 + Γ2

, (7.31)

is just the series conductance of the two tunnel conductances. The resonances are averaged
out by taking a uniform distribution of the phase shifts φn. Physically, this averaging
corresponds either to an average over weak disorder in the region between the barriers,
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Figure 7.4: The distribution ρ(T ) of transmission eigenvalues T for (a) a double-barrier
junction, according to Eq. (7.29) with Γ1 = Γ2 = 0.01; (b) a chaotic cavity, which we do
not discuss here in detail; and (c) a disordered wire, according to Eq. (7.35) with L = 20`.
Each structure has a bimodal distribution.

or to a summation over a large number of modes if the separation between the barriers is
large compared to the Fermi wave length, or to an applied voltage larger than the width
of the resonance. For the shot-noise power one obtains

〈P 〉 = P0

1∫
0

dT ρ(T )T (1− T ) =
Γ2

1 + Γ2
2

(Γ1 + Γ2)2
PPoisson , (7.32)

using Eqs. (7.30) and (7.31). For asymmetric junctions, one barrier dominates the transport
and the shot noise equals the Poisson noise. For symmetric junctions, the shot noise gets
suppressed down to 〈P 〉 = 1

2
PPoisson for Γ1 = Γ2. The theoretical result (7.32) is in

agreement with the several experimental observations.
The suppression of the shot noise below PPoisson in symmetric junctions is a consequence

of the bimodal distribution of transmission eigenvalues, as plotted in Fig. 7.4a. Instead of
all Tn’s being close to the average transmission probability, the Tn’s are either close to 0
or to 1. This reduces the sum Tn(1−Tn). A similar suppression mechanism exists for shot
noise in chaotic cavities and in disordered conductors.

Phase coherence is not essential for the occurrence of suppressed shot noise. The method
described above (with Gm = Sm = G0NΓm for m = 1, 2) shows that both quasi-elastic
scattering [see Eq. (7.24)] and inelastic scattering [see Eq. (7.28)] do not modify Eq. (7.32).
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Thermalization of the electrons in the region between the barriers enhances the shot noise,
as follows from Eq. (7.27). For Γ1 = Γ2 we find

P =
[

1
2

+
√

3
π

ln
(

1 + e−π/
√

3
)]

PPoisson ' 0.58PPoisson , (7.33)

which is slightly above the one-half suppression in the absence of thermalization.

Coulomb Blockade

The suppression of the shot noise described in the previous Section is due to correlations
induced by the Pauli principle. Coulomb interactions are another source of correlations
among the electrons. As we have discussed, a measure of the importance of Coulomb
repulsion is the charging energy EC = e2/2C of a single electron inside the conductor with
a capacitance C. If eV < EC , conduction through the junction is suppressed. At eV > EC ,
one electron at a time can tunnel into the junction. The next electron can follow, only after
the first electron has tunneled out of the junction. This is the single-electron tunneling
regime.

Experiments on the noise suppression in Coulomb-blockade regime were reported in
Reef. [34]. Here, the double-barrier junction was formed by a scanning-tunneling micro-
scope positioned above a metal nanoparticle on an oxidized substrate. Due to the small
size of the particle, Ec ≥ 1000kBT, at T = 4 K. The relative heights of the two tunnel
barriers can be modified by changing the tip-particle distance. Experimental results for
an asymmetric junction are plotted in Fig. 7.5. The I-V characteristics display a stepwise
increase of the current with the voltage. (Rotating the plot 90◦ yields the usual presenta-
tion of the ‘Coulomb staircase.’) At small voltage, I ' 0 due to to the Coulomb blockade.
At each subsequent step in I, the number of excess electrons in the junction increases by
one. The measured shot noise oscillates along with the step structure in the I-V curve.
The full shot-noise level P = PPoisson is reached at each plateau of constant I. In between,
P is suppressed down to 1

2
PPoisson. The experimental data are in excellent agreement with

the theory.
A qualitative understanding of the periodic shot-noise suppression caused by the Coulomb

blockade goes as follows: On a current plateau in the I-V curve, the number of electrons in
the junction is constant for most of the time. Only during a very short instance an excess
electron occupies the junction, leading to the transfer of one electron. This fast transfer
process is dominated by the highest tunnel barrier. Since the junction is asymmetric, Pois-
son noise is expected. The situation is different for voltages where there is a step in the I-V
curve. Here, two charge states are degenerate in total energy. If an electron tunnels into
the junction, it may stay for a longer time, during which tunneling of the next electron is
forbidden. Both barriers are thus alternately blocked. This leads to a correlated current,
yielding a suppression of the shot noise.

An essential requirement for the Coulomb blockade is that G . e2/h. For larger G the
quantum-mechanical charge fluctuations in the junction become big enough to overcome
the Coulomb blockade. The next Section will discuss shot noise in a quantum dot, without
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Figure 7.5: Experimental results by Birk et al. [34] in the single-electron tunneling regime.
The double-barrier junction consists of a tip positioned above a nanoparticle on a substrate.
(a) Experimental voltage V versus current I. (b) Shot-noise power P versus I. Squares:
experiment; solid line: theory.

including Coulomb interactions. This is justified as long as G & e2/h. For smaller G, the
quantum dot behaves essentially as the double-barrier junction considered above.

Disordered Metal

One-third suppression

We now turn to transport through a diffusive conductor of length L much greater than
the mean free path `, in the metallic regime (L � localization length). The average
conductance is given by the Drude formula,

〈G〉 = G0
N`

L
, (7.34)

up to small corrections of order G0 (due to weak localization). The mean free path ` = ad `tr

equals the transport mean free path `tr times a numerical coefficient, which depends on
the dimensionality d of the Fermi surface (a2 = π/2, a3 = 4/3).

From Eq. (7.34) one might surmise that for a diffusive conductor all the transmission
eigenvalues are of order `/L, and hence � 1. This would imply the shot-noise power P =
PPoisson of a Poisson process. This surmise is completely incorrect. A fraction `/L of the
transmission eigenvalues is of order unity (open channels), the others being exponentially
small (closed channels). For `� L� N`, the density of the Tn’s is given by

ρ(T ) =
N`

2L

1

T
√

1− T
, T ∈ [T−, 1] , (7.35)
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ρ(T ) = 0 otherwise, with T− = 4e−2L/`. The density ρ(T ), plotted in Fig. 7.4c, is again
bimodal with peaks near unit and zero transmission.

One easily checks that the bimodal distribution (7.35) leads to the Drude conductance
(7.34). For the average shot-noise power it implies

〈P 〉 = P0
N`

3L
=

1

3
PPoisson . (7.36)

This suppression of the shot noise by a factor one-third is universal , in the sense that it
does not depend on the specific geometry nor on any intrinsic material parameter (such as
`).

Dependence on wire length

The one-third suppression of the shot noise breaks down if the conductor becomes too short
or too long. Upon decreasing the length of the conductor, when L becomes comparable to
`, the electron transport is no longer diffusive, but enters the ballistic regime. Then the
shot noise is suppressed more strongly,

P = 1
3

[1− (1 + L/`)−3]PPoisson . (7.37)

For L � ` there is no shot noise, as in a ballistic point contact. Equation (7.37) is exact
for a special model of one-dimensional scattering, but holds more generally within a few
percent. The crossover of the shot noise from the ballistic to the diffusive regime is plotted
in Fig. 7.6. Upon increasing L at constant cross section of the conductor, one enters the
localized regime. Here, even the largest transmission eigenvalue is exponentially small, so
that P = PPoisson. Experimentally, the crossover from the metallic to the localized regime

Figure 7.6: The shot-noise power P of a disordered metallic wire as a function of its
length L, as predicted by theory. Indicated are the elastic mean free path `, the electron-
electron scattering length lee and the electron-phonon scattering length lep. Dotted lines
are interpolations.

is usually not reached, because phase coherence is broken when L is still much smaller
than the localization length N`. In the remainder of this Section, we apply the method of
Sec. 7.3 to determine the effect of phase breaking and other inelastic scattering events on
the shot noise in a disordered metal. We divide the conductor into M segments connected
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by reservoirs, taking the continuum limit M → ∞. The electron distribution at position
x is denoted by f(ε, x). At the ends of the conductor f(ε, 0) = f1(ε) and f(ε, L) = f2(ε),
i.e. the electrons are Fermi-Dirac distributed at temperature T and with electrochemical
potential µ(0) = EF + eV and µ(L) = EF , respectively. It follows from Eqs. (7.21) and
(7.22) that the noise power is given by

P =
4

RL

L∫
0

dx

∞∫
0

dε f(ε, x)[1− f(ε, x)] . (7.38)

We evaluate Eq. (7.38) for the three types of scattering discussed in Sec. 7.3.
Quasi-elastic scattering. Current conservation and the absence of inelastic scattering

requires

f(ε, x) =
L− x
L

f(ε, 0) +
x

L
f(ε, L) . (7.39)

The electron distribution at x = L/2 is plotted in the inset of Fig. 7.7. Substitution of Eq.
(7.39) into Eq. (7.38) yields

P = 2
3

[4kBTG+ eI coth(eV/2kBT)] . (7.40)

At zero temperature the shot noise is one-third of the Poisson noise. The same result
follows from the phase-coherent theory [Eqs. (7.17) and (7.35)], demonstrating that quasi-
elastic scattering has no effect on the shot noise. The temperature dependence of P is
plotted in Fig. 7.7.

Electron heating. The electron-distribution function is a Fermi-Dirac distribution with
a spatially dependent electrochemical potential µ(x) and temperature Te(x),

f(ε, x) =

{
1 + exp

[
ε− µ(x)

kBTe(x)

]}−1

, (41a)

µ(x) = EF +
L− x
L

eV , (41b)

Te(x) =
√

T2 + (x/L)[1− (x/L)]V 2/L0 , (41c)

cf. Eqs. (7.25) and (7.26). Equations (7.38) and (7.41) yield for the noise power the result

P = 2kBTG+ 2eI

[
2π√

3

(
kBT

eV

)2

+

√
3

2π

]
arctan

(√
3

2π

eV

kBT

)
, (7.42)

plotted in Fig. 7.7. In the limit eV � kBT one finds

P = 1
4

√
3PPoisson ' 0.43PPoisson . (7.43)

Electron-electron scattering increases the shot noise above 1
3
PPoisson because the exchange

of energies makes the current less correlated.
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Figure 7.7: The noise power P versus voltage V for a disordered wire in the presence
of quasi-elastic scattering [solid curve, from Eq. (7.40)] and of electron heating [dashed
curve, from Eq. (7.42)]. The inset gives the electron distribution in the middle of the
wire at kBT = 1

20
eV . The distribution for inelastic scattering is included for comparison

(dash-dotted). Experimental data of Steinbach, Martinis, and Devoret [35] on silver wires
at T = 50 mK are indicated for length L = 1µm (circles) and L = 30µm (dots).

Inelastic scattering. The electron-distribution function is given by

f(ε, x) =

{
1 + exp

[
ε− µ(x)

kBT

]}−1

, (7.44)

with µ(x) according to Eq. (41b). We obtain from Eqs. (7.38) and (7.44) that the noise
power is equal to the Johnson-Nyquist noise for arbitrary V . The shot noise is thus
completely suppressed by inelastic scattering.

The dependence of the shot-noise power on the length of a disordered conductor is
plotted in Fig. 7.6. The phase coherence length (between ` and lee) does not play a role.

Results of accurate experiments by Steinbach, Martinis, and Devoret [35] on silver wires
are shown in Fig. 7.7. The noise in a wire of L = 30 µm is in excellent agreement with
the hot-electron result (7.42). For the L = 1 µm wire the noise crosses over to the elastic
result (7.40), without quite reaching it.
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Appendix A

Second quantization

Now we briefly discuss the way to describe many-electron states with the occupation num-
bers.

Bosons

In general case, the total wave function of bosons is symmetric in replacement of the
particles. Thus it can be expressed as a symmetric product of individual wave functions

ΦN1N2... =

(
N1!N2! . . .

N !

)1/2∑
P

ϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN) , (A.1)

where pi label the states, ϕpi are while the sum is calculated over all the permutations of
{pi}. The coefficient is introduced to make the to total function normalized:

∫
|Φ|2

∏
i dξi =

1.
The main idea is to consider ΦN1N2... as a function of the occupation numbers Ni. Assume

that we have an arbitrary one-particle symmetric operator

F (1) =
∑
a

f (1)
a (A.2)

where fa acts only upon the functions of ξa. In is clear that acting upon ΦN1N2... it changes
the state of only one particle. So in is reasonable to introduce the operators with matrix
elements

(bi)
Ni−1
Ni

=
√
Ni , (b†i )

Ni
Ni−1 =

[
(bi)

Ni−1
Ni

]∗
=
√
Ni (A.3)

It is just annihilation and creation operators introduced earlier. The operator (A.2) can
be expressed in terms of the creation-annihilation operators as

F (1) =
∑
ik

f
(1)
ik b

†
ibk (A.4)

where

f
(1)
ik =

∫
ϕ∗(ξ)f (1)ϕ(ξ) dξ . (A.5)
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One can easily prove this relation comparing both diagonal and off-diagonal matrix ele-
ments of the operators. A 2-particle symmetric operator

F (2) =
∑
a,b

f
(2)
ab (A.6)

where f
(2)
ab acts upon the functions of the variables ξa and ξb can be expressed as

F (2) =
∑
iklm

f iklmb
†
ib
†
kblbm (A.7)

where

f iklm =

∫
ϕ∗i (ξ1)ϕ∗k(ξ2)f (2)ϕl(ξ1)ϕm(ξ2) dξ1 dξ2 . (A.8)

Electrons

Now we turn to the Fermi statistics to describe electrons. According to the Pauli principle,
the total wave function should be anti-symmetric over all the variables. So the occupation
numbers could be 0 or 1. In this case we get instead of (A.1)

ΦN1N2... =
1√
N !

∑
P

(−1)Pϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN) (A.9)

where all the numbers p1, p2, . . . , pN are different. The symbol (−1)P shows that odd and
even permutations enter the expression (A.9) with opposite signs (we take the sign ‘+’ for
the term with p1 < p2 < . . . < pN). Note that the expression (A.9) can be expressed as the
determinant of the matrix with the elements Mik = (1/

√
N !)ϕpi(ξk) which is often called

the Slater determinant.
The diagonal matrix elements of the operator F (1) are

F̄ (1) =
∑
i

f
(1)
ii Ni (A.10)

just as for the Bose particles. But off-diagonal elements are(
F (1)

)1i0k

0i1k
= ±f (1)

ik (A.11)

where the sign is determined by the parity of the total number of particles in the states
between the i and k ones. 1 Consequently, for Fermi particles it is convenient to introduce
the annihilation and creation operators as

(ai)
0
1 = (a†i )

1
0 = (−1)

∑i−1
l=1 Nl . (A.12)

1Note that for Bose particles similar matrix elements are
(
F (1)

)Ni,Nk−1

Ni−1,Nk
= f

(1)
ik

√
NiNk.
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We immediately get (Check!) the commutation rules for the Fermi operators:{
aia
†
k

}
≡ aia

†
k + a†iak = δik ,

{aiak} =
{
a†ia
†
k

}
= 0 . (A.13)

The product of Fermi operators are

a†iai = Ni , aia
†
i = 1−Ni . (A.14)

One can express all the operators for Fermi particles exactly in the same way as the Bose
ones, Eqs. (A.4), (A.7).
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Appendix B

Quantum corrections to conductivity

B.1 Diagrammatic perturbation theory

Assume the simplest model for the scattering potential a set of randomly distributed im-
purities with short-range potential,

U(r) =

Ni∑
j=1

u(r− ri) ≈
u0

V

Ni∑
j=1

δ(r− rj) .

Here Ni is the number of defects, u0 is the potential amplitude, while V is the system
volume. The the correlation function of the potential is in the main approximation

〈U(r)U(r′)〉 = niu
2
0 δ(r− r′) .

Here ni = Ni/V is the impurity concentration. The following procedure is actually valid
in the limiting case

Ni →∞ , V → ∞ , u0 → 0 , niu
2
0 = const .

Let us assume also zero temperature to avoid inelastic scattering.
Under these assumptions it is convenient to introduce the resolvent operator

Ĝ(z) = (z −H)−1

where z is a complex number, while H is the Hamiltonian of the system. Since formally

(ε−H± i0)−1 = P
1

ε−H
∓ iπ δ(ε−H) ,

where P means the principal value, we can write

g(ε) =
1

V
Tr δ(ε−H) = ∓ 1

πV
= [Tr Ĝ(ε± i0)] .
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The matrix elements of Ĝ,

〈r|Ĝ(ε± i0)|r′〉 =
∑
α

ψα(r)ψ∗α(r′)

ε− εα ± i0
= GR,A

ε (r, r′) (B.1)

are called retarded (+i0) or advanced (−i0) Green functions. They have a simple physical
meaning of the propagation amplitudes for the states with a given energy,

GR
ε =

1

i~
A(r→ r′) “along the time”

while

GA
ε =

i

~

A(r→ r′) “against the time” .

At kF `� 1 a perturbational approach is possible which allows to expand Green functions
in powers of scattering potential and zeroth-order propagators

G(0)(z, r− r′) =
∑

k

G(0)(z,k) eik(r−r′) , (B.2)

where

G(0)(z,k) = 〈k|Ĝ(0)(z)|k′〉 =
1

z − εk

δk,k′ . (B.3)

It is convenient to use k-representation and expand

GR,A(k,k′) =
∑
α

ψα(k)ψ∗α(k′)

ε− εα ± i0
.

The result can be expressed in a diagrammatic form, as shown in Fig. B.1, panel (a). Each
solid line corresponds to the non-perturbed propagator (B.3), each dashed line corresponds
to the transferred momentum qj, each vertex corresponding to scattering at the defect at
the point rj contributes as

u0

V
eiqjrj δ(kj+1 − kj − qj) .

After n scattering events the incoming wave vector k is changed to k′ = k +
∑n

j=1 qj. For
given k and k′ one should sum over all qj keeping the above conservation law.

The impurity average can be performed by summing over all pairwise contractions [see
Fig. B.1, panel (b)], each contraction contributes as

〈U(qi)U(qj)〉 = niu
2
0V δqi,−qj .

The formal summation of the perturbation series can be performed by introducing the
irreducible diagrams, Σ, which cannot be divided into parts by cutting only a single G(0).
As it can be easily seen, in this way we arrive at the Dyson equation (see Fig. B.2),

〈G〉 = G(0) +G(0))Σ 〈G〉 .
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Figure B.1: a – Diagrammatic representation of the perturbations in scattering strength.
b – Perturbation series for the average Green function.

Σ= +

Figure B.2: Illustration of the Dyson equation.

Its formal solution is

〈G〉 =
1

(G(0))
−1 − Σ

.

Since this solution sums up an infinite series, we calculate the self-energy Σ in the lowest
order in niu

2
0, which is just the triangle in the first diagram in Fig. B.1, panel (b). That

corresponds to the Born approximation in quantum mechanical scattering. The result is

ΣB(z,k) = niu
2
0

∑
q

1

z − εk+q

= niu
2
0

∫
dε
g0(ε)

z − ε
. (B.4)

Taking z = ε + i0 the associated retarded self-energy has both real and imaginary part.
The real part (actually divergent) can be absorbed into renormalization of bare energies
εk. The imaginary part

=ΣB(ε) = −πniu2
0g0(ε)

near the Fermi level can be replaced by a constant

γ = ~/2τ = ~vF/`

yielding the average Green function

GR
ε (k,k′) =

δk,k′

ε− εk + ~/2τ
(B.5)
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that is equivalent in the coordinate representation to the Green function depending on
r = ri − rf as

GR
εF

(r) = − m

2π~2

eikF r

r
e−r/2` . (B.6)

This is just damped outgoing spherical wave.

B.2 Kubo-Greenwood formula

A time-dependent electric field E(r, t) = −∇V (r, t) leads to a change in the Hamiltonian
H(t)→ H− eV (r, t). Let us for simplicity assume that

V (r, t) = V (r)e−s|t| cosωt , s→ +0 .

Assume that the electric field is concentrated only in the region where the scattering takes
place and introduce a complete orthonormal set of exact eigenstates ψα(r) indexed by
continuous variable α.

To calculate current we need the nonequilibrium density matrix %̂ which is determined
by von Neumann equation

i~
∂%̂

∂t
= [H(t), %̂] .

The equilibrium state is described by the density matrix

%̂(0) =

∫
dα f(εα)|α〉〈α| ,

where f(εα) is the Fermi function. The first-order correction is

i~∂t%̂
(1) = [H, %̂(1)] + [H1, %̂

(0)] .

Introducing fβα = f(εβ)− f(εα) and Vαβ = 〈α|V (r)|β〉 we obtain

i~∂t%
(1) = −εβα%(1)

αβ − efβαVαβe
−s|t| cos(ωt) .

Its solution for the initial condition %̂→ 0 at t→ −∞ has the form

%
(1)
αβ(t < 0) = −e

2
fβαVαβe

st

(
eiωt

εβα − ~ω + i~s
+ (ω → −ω)

)
.

Now we can calculate the current,

j(r, t) = Tr
(
%̂(1)ĵ(r)

)
=

∫
dα dβ %

(1)
αβ jβα(r) .

Here

jβα(r) =
ie~

2m

[
ψ∗β(r)Dψα(r)− ψα(r)D∗ψ∗β(r)

]
,
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where
D = ∇+ (ie/~c)A(r)

is the covariant derivative. Expressing

eVαβ =
i~

εβα

∫
ddr jαβ(r) · E(r)

and collecting the contributions to the current as j(r) cos(ωt), we obtain

j(r) =

∫
ddr′ σ̂(r, r′)E(r′)

where non-local conductivity σ̂(r, r′) is given by the expression

σ̂(r, r′) =
~

2i

∫
dα dβ

[
fβα

εβα − ~ω + i~s
+ (ω → −ω)

]
jβα(r)⊗ jαβ(r′) .

Here ⊗ means tensor product of two vectors. Having in mind the definitions of the Green
functions and taking Fourier transform in the quantity r − r′ we find that non-local con-
ductivity at T = 0 can be expressed as

σij(q, ω) =
~

3e2

3m2πV
∑
k,k′

kik
′
jKkk′(q, ω) , (B.7)

where
Kkk′(q, ω) = GR(k+,k

′
+, εF + ~ω)GA(k−,k

′
−, εF ) . (B.8)

Here k±k± q/2. Note that the function

Φ(q, ω) =
∑
k,k′

Kkk′(q, ω) (B.9)

has a physical meaning of a density relaxation function.

B.3 Weak localization corrections

The function Kkk′(q, ω) is a two-particle Green function. We are interested in its impurity
average,

Kkk′(q, ω) ≡ 〈Kkk′(q, ω)〉 .
Again, we can extract irreducible vertex part, Γkk′(q, ω) [see Fig. B.3, panel (a)] As a result,
we rewrite K-function as

Kkk′(q, ω) = GR
k+
GA

k− δk,k′ +GR
k+
GA

k−Γkk′(q, ω)GR
k′+
GA

k′−
. (B.10)

Here GR,A denote averaged Green functions which take into account the impurity lines
which start and finish at the same line. The vertex part Γ takes into account correlations
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k+ k+ k+k+’ k+’

k- k- k-k-’ k-’

= + ++ ....

= +

Figure B.3: Graphical representation of the disorder average of the product GRGA. The
thick lines denote averaged Green functions.

between the quantum mechanical amplitude and the time-reversed one due to scattering
against the same impurity centers.

The first term in this equation leads to the Drude formula, while the quantum correc-
tions are incorporated in the vertex part, Γ. If the corrections are small, this part can be
calculated using the main sequence of the diagrams. Two types of diagrams are usually
discussed - ”diffusons” and ”cooperons”, they leads to the main contributions provided
kF `� 1.

The first type is the so-called ”ladder” diagrams [see Fig. B.4, panel (a)]. Summing the
”ladder”, diagrams we obtain

Γ
(d)
kk′(q, ω) =

niu
2
0

V
1

1− ζ(q, ω)
, (B.11)

where

ζ(q, ω) =
niu

2
0

V
∑

k

GR
k+

(εF + ~ω)GA
k−(εF ) . (B.12)

For q, ω → 0 one can expand εk± ≈ εk ± ~(q · v)/2 to obtain

ζ(q, ω) =

∫
dΩk

4π

1

1− iωτ + iτ(q · v)
≈ 1 + iωτ −Dq2τ ,

where D = vF `/3 is the diffusion constant. Thus, at ωτ, q`� 1

Γ
(d)
kk′(q, ω) =

niu
2
0

τV
1

−iω +Dq2
.
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Diffuson

Cooperon

(a)

(b)

Γd Γd= +

Γc Γc= +

Figure B.4: On the “diffuson” and “cooperon” contributions.

One can easily check that the associated density relaxation function has a diffusion pole.
At the same time, the “diffuson” part does not enter the expression (B.7) at q → 0. for
conductivity because of asymmetry in k and k′. Actually, this is a consequence of our
model of point-defect scattering. For more realistic potentials “ladder” diagrams lead to
renormalization of the elastic mean free time τ into the transport relaxation time τtr.

Now let us turn to the “cooperon” contribution [Fig. B.4, panel (b)]. We can obtain
the result without doing a new work by exploiting time reversal symmetry and assuming 1

〈k′−|GA|k−〉 = 〈−k−|GA| − k′−〉 .

As a result of the invariance of the replacement k↔ −k′

Γkk′(q, ω) = Γk−k′+q/2,k′−k+q/2(k + k′, ω) .

As a result, at
Q = k + k′ → 0, ω → 0

one obtains

Γ
(c)
kk′(q, ω) =

niu
2
0

τV
1

−iω +DQ2
. (B.13)

The singularity at k + k′ → 0 is due to backscattering. The expression (B.13) is called the
cooperon because of formal analogy with superconductivity.

Substituting (B.13) into general expression for the conductivity (B.7) and replacing
〈kikj〉 → k2

F/2 we get

∆σ(ω) = −~nie
2u2

0v
2
F

3πτ

∫
d3k

(2π)3
(GRGA)2 1

V
∑
Q

1

−iω +DQ2
. (B.14)

1This not true in the presence of magnetic field, or inelastic scattering.
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Making use of the relation ∫
d3k

(2π)3
(GRGA)2 ≈ 4πτ 3g(εF )

we finally get

∆σ(ω) = −2e2

π~

D

V
∑
Q

1

−iω +DQ2
. (B.15)

To make summation over Q let us use the following trick. Namely, recall that

1

−iω +DQ2
=

∫ ∞
0

dt e(iω−DQ2)t .

On the other hand, exp(−DQ2t) is the Fourier transform of the Green’s function of the
diffusion equation,

pdP (r, t)t = D∇2P (r, t) , P (r, 0) = δ(r) .

This Green’s function has the form

P (r, t) =
1

(4πDt)d/2
exp

(
− r2

4Dt

)
.

Since
1

V
∑
Q

1

−iω +DQ2
= P (0, t)

we obtain the formal result,

∆σ = −2e2D

π~

∫ tmax

tmin

dt

(4πDt)d/2
. (B.16)

The results depend essentially upon cut-off times, tmax,min. Usually it is chosen tmin =
τ, tmax = τϕ. However, there are much more sophisticated ways to treat more realistic sys-
tems. The usual way is to replace the Green’s function P (r, t) of the diffusion equation by
P (r, t)e−t/τϕ . To calculate P (r, t) for a realistic system, a boundary problem is formulated
for the eigenfunction of the diffusion operator,

−D∇2Ps = λsPs , ∂nPs |vac = 0, P (r, t) |lead = 0 .

where subscripts “vac” and “lead” mean interfaces with vacuum and leads, respectively.
Since

P (r, t) =
∑
s

Ps(r)e−λst ,

we obtain

∆σ = −2e2D

π~

1

V

(λs≥1/τ)∑
s

1

−iω + 1/τϕ + λs
.
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Assuming the sample infinite in x, y-direction and Lz � Lϕ =
√
Dτϕ we get

∆σ2d = − e
2

π~
ln
(τϕ
τ

)
.

The above mentioned procedure allows a rather simple generalization for the case of mag-
netic field. It appears sufficient to change the diffusion equation to

−D
(
∇+ i

2e

~c
A

)2

Ps(r) = λsPs(r) .

The boundary condition are also changed to include covariant derivatives,

∂n → ∂n + 2i(e/~c)An ,

as in the Ginzburg-Landau equations for superconductivity.
Let us apply this procedure to calculate the conductivity of an infinite slab with

Lz � Lϕ in the perpendicular magnetic filed. To find the eigenvalues we can consider
a Schrödinger equation for a particle with the mass M = ~/2D ≈ m/kF ` and charge −2e
in the presence of magnetic field. As a result,

λs = (s+ 1/2)(4DeH/~) .

As a result,

∆σ2d(H) = −2e2DeH

(π~)2

smax∑
s=0

[
1

τϕ
+

4eDH

c~

(
s+

1

2

)]−1

where smax ≈ c~/(2eH`2)� 1. In the limit `� Lϕ,
√
c~/2eH the result can be expressed

through the standard Digamma function, Ψ:

∆σ2d(H) = − e2

2π2
~

[
ln

(
c~

2eH`2

)
−Ψ

(
1

2
+

1

2

c~

2eHDτϕ

)]
. (B.17)

This expression provides numerical factors. It has two clearly different regimes which cross
over at

Hϕ =
h

2eL2
ϕ

.
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Appendix C

Derivation of Landauer formula.

In this derivation I partly follow Ref. [18]. According to quantum mechanics, the expecta-
tion value of any single-particle operator Â can be expressed through the time-dependent
density matrix, ρ(t) as

〈A〉 = Tr
{
ρ(t)Â

}
,

where ρ(t) satisfies the equation of motion

ρ̇ = −(i/~)[H, ρ] .

The unperturbed system is described through the Fermi function f(ε) as

ρ0 =

∫
dα f(εα)|ψα〉〈ψα| .

Here |ψα〉 stand for exact scattering-wave states of the equilibrium system with energy εα.
The integral is written to emphasize that we deal with continuous spectrum.

Let us assume that the system is perturbed by a scalar potential with frequency ω
which is turned on adiabatically at t→ −∞,

φ ∝ exp(νt− iωt) , ν → 0 .

We assume that the potential amplitude approaches a constant value in each lead. Then
we solve the equation for ρ up to the linear terms in φ. In the limiting case, just as in
course of derivation of the Kubo formula for extended systems, we get

〈J(r)〉 =

∫
dr′ σ̂(r, r′) · E(r′) ,

where the local Kubo conductivity tensor is given by the expression

σ̂(r, r′) = −~
∫
dα dβ

[
f ′(εα)πδ(εβα) + i

fβα
εβα
P
(

1

εβα

)]
Jβα(r)Jαβ(r′) . (C.1)
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Here εβα ≡ εβ − εα, fβα ≡ f(εβ) − f(εα), f ′ ≡ ∂f/∂ε and P denotes the principal value.
Jβα(r) is the matrix element of the current operator between that exact eigenstates,

Jβα(r) = − ie~
2m

[
ψ?β(r)Dψα(r)− ψα(r)D?ψ?β(r)

]
,

where
D ≡ ∇− (ie/~c)A(r)

denotes the gauge-invariant derivative. It follows that in the absence of magnetic field the
principle value vanishes because to time-reversal invariance.

The current densities should be integrated over the surfaces of the leads. As a result,
the conductance is given by the expression

Gmn =

∫
dSm

∫
dSn · σ̂(r, r′) · n .

Here and n are unit vectors normal to the cross-section.
In the absence of magnetic field one can immediately integrate Eq. (C.1) over energy

and take the limit T → 0. Then the result becomes a sum over discrete states at εF of the
form

e2

2h

∑
α,β

Iβα(m)Iαβ(n) , (C.2)

where

Iβα(m) ≡
∫
dSm · Jβα(r) . (C.3)

The normalization factor h−2 arises from the integration over the energy.
Since the energies are fixed, the states are characterized by a mode index a, b, and a

lead index p, q denoting the lead and mode which contains an incoming wave from infinity.
In lead m,

ψα(r) = φ−ap(r) +
∑
cs

tsc←apφ
+
sc(r) ,

ψ?β(r) = φ−?bq (r) +
∑
ds

t?sd←bqφ
+?
sd (r) .

Here tsc←ap is the transmission amplitude for an incident wave in lead p and mode a to
scatter to lead s and mode c. φ+

c (r) are the wavefunctions of the infinite perfect leads
consisting of a longitudinal plane wave traveling away from the sample multiplied by the
transverse wavefunction for the mode c. If we are interested in Iβα(m) we keep onpy the
items which involve the states existing in mth lead,

ψα(rm) = φ−mp(rm) +
∑
c

tmc←apφ
+
mc(rm) ,

ψ?β(rm) = φ−?mq(rm) +
∑
d

t?md←bqφ
+?
md(rm) .
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Thus,

ψ?β(rm)∂xψα(rm)− ψα(rm)∂xψ
?
β(rm)

=

(
φ−?mq(rm) +

∑
d

t?md←bqφ
+?
md(rm)

)
∂x

(
φ−mp(rm) +

∑
c

tmc←apφ
+
mc(rm)

)

−

(
φ−mp(rm) +

∑
c

tmc←apφ
+
mc(rm)

)
∂x

(
φ−?mq(rm) +

∑
d

t?md←bqφ
+?
md(rm)

)
.

Since transverse modes are orthogonal and normalized to a unit flux we get after intergra-
tion over Sm,

Iβα(m) =

[
δpqδabδam −

∑
c

tmc←bqt
?
mc←ap

]
.

In a similar way,

Iαβ(n) =

[
δpqδabδan −

∑
d

t?nd←bqtnd←ap

]
.

Substituting these expressions into the Kubo formula (C.1) and using unitarity of sctat-
tering amplitides and time reversobolity, after rather long algebra we get

Gmn =
e2

h
Tr tt† =

e2

h
Tmn .
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Appendix D

Coulomb blockade in a
non-stationary case

Then we can use Kirchoff’s second law for the 2 loops in Fig. 4.5,

Ve −
Qe

Ce
+
Qg

Cg
− Vg = 0 (D.1)

Vc −
Qc

Cc
+
Qg

Cg
− Vg = 0 . (D.2)

Combining equations (4.11),(D.1) and (D.2), we find all the charges,

Qe =
Ce
C

[Cc(Ve − Vc) + CgVe − CgVg − ne] ; (D.3)

Qc =
Cc
C

[−(Ce + Cg)(Ve − Vc) + CgVe − CgVg − ne] ; (D.4)

Qg =
Cg
C

[Cc(Ve − Vc)− (Ce + Cc)(Ve−)Vg − ne] . (D.5)

Now let us suppose that 1 electron tunnels from emitter to the grain, then the number of
excess electrons is changed,

n→ n+ 1 , Qe → Qe − e .

This situation is non equilibrium, so a current must flow through the external circuit. The
net change of charge with respect to the equilibrium value for n+ 1 excess electrons given
by Eq. (D.3) is

δQe = −eCe
C

= −e− δQc − δQg = −e+ e
Cc + Cg

C
.

We observe that the charge transferred through the voltage source Ve is eαee where αee ≡
(Cc+Cg)/C. Looking at Eq. (D.4) we find that the charge transferred through the voltage
source Vc is αece where αec = Cc/C. In a similar way we can consider the jump of
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the electron from the grain to collector. In this case we have the transferred charges
eαce, αce = Ce/C through the source Ve and eαcc, αcc = (Ce + Cg)/C through the source
Vc.

Let us define the tunneling currents through emitter and collector junctions as Ie/c(t),
respectively. Then the current in the emitter branch is

Il(t) = αeeIe(t) + αceIc(t)

=
Cc + Cg

C
Ie(t) +

Ce
C
Ic(t) .

In a similar way, the current in the collector lead is

Ir(t) = αecIe(t) + αccIc(t)

=
Cc
C
Ie(t) +

Ce + Cg
C

Ic(t) .

Usually, Cg � Ce, Cc, and Il ≈ Ir ≈ I(t), where

I(t) = αeIe(t) + αcIc(t) , αe =
Cc
C
, αc =

Ce
C
. (D.6)

The partial currents can be expressed through the probability pn(t) to find n excess elec-
trons at the grain and the tunneling rates Γµ→ν(n),

Iµ(t) = e
∑
n

pn(t) [Γµ→ν − Γν→µ] . (D.7)

The probability pn(t) should be calculated from the Master equation,

dpn(t)

dt
= pn−1Γnn−1 + pn+1Γnn+1 −

(
Γn−1
n + Γnn+1

)
pn(t) . (D.8)

Here

Γnn−1 = Γe→g(n− 1) + Γc→g(n− 1) ; (D.9)

Γnn+1 = Γg→e(n+ 1) + Γg→c(n+ 1) . (D.10)
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